
111111 111

(12) United States Patent
Wilson

(54) COMPUTER PROGRAM INTEGRITY
VERIFICATION

(76) Inventor: Kelce S Wilson, 1205 Terrace Mill Dr.,
Murphy, TX (US) 75094

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 0 days.

(21) Appl. No.: 12/637,751

(22) Filed: Dec. 15, 2009

(65) Prior Publication Data

US 2010/0095129 Al Apr. 15,2010

Related U.S. Application Data

(63) Continuation of application No. 12/053,560, filed on
Mar. 22, 2008, now Pat. No. 7,676,501.

(51) Int. Cl.
G06F 7/00 (2006.01)

(52) U.S. Cl. .. 707/694
(58) Field of Classification Search 707/694

See application file for complete search history.

Computing Apparatus

I
CPU

1802
1

Memory 1803

I Digital representation 1804 I

Modified IVC generator 1805

I Data sequence modifier 1807 I

I IVC Generator 1808 I

I Modification rules 1809 I

I Document processor 1806 I

US007865484B2

(10) Patent No.: US 7,865,484 B2
Jan. 4,2011 (45) Date of Patent:

(56) References Cited

U.S. PATENT DOCUMENTS

6,233,340 Bl
6,549,624 Bl
6,792,110 B2

2002/0169971 Al *
2003/0023847 Al *
2003/0130032 Al *
2003/0145206 Al *
2004/0080777 Al
2008/0091954 Al

* cited by examiner

5/2001 Sandru
4/2003 Sandru
912004 Sandru

1112002 Asano et al 713/193
112003 Ishibashi et al 713/169
712003 Martinek et al 463/29
7/2003 Wolosewicz et al 713/176
412004 Smith
4/2008 Morris

Primary Examiner-Charles Rones
Assistant Examiner-Fazlul Quader
(74) Attorney, Agent, or Firm-Kelce S. Wilson

(57) ABSTRACT

A system and method are disclosed that can extend, by many
years, the useful life of currently-trusted integrity verification
algorithms, such as hash functions, even when applied to
binary executable files and data files, the contents of which
are not thoroughly examined by humans in their binary state.
Embodiments can efficiently identify whether multiple digi
tal files are substantially similar, even if they are not identical,
thus potentially reducing storage space requirements.

11 Claims, 15 Drawing Sheets

1800

~
1801

1104

~
/ ~
I DI I III I\,

1105 ,-'--

'---- -----

- ----- ----
'---

kewilson
Highlight

kewilson
Highlight

kewilson
Highlight

u.s. Patent Jao.4,2011 Sheet 1 of 15 US 7,865,484 B2

FIG. 1 100

~

Receive Original Document

Generate Original Data Sequence

Generate Modified Data Sequence 1QQ.

Generate Original IVC for Modified Data Sequence 1QZ

Associate Original IVC with Original Data Sequence 109

u.s. Patent Jao.4,2011 Sheet 2 of 15 US 7,865,484 B2

FIG. 2 200

~
I Receive Document Copy 201 I

I
Identify Section of Copy Corresponding
to Original Data Sequence ~

I
I Identify Original IVC .f..Q§ I

I
Generate Verification Data Sequence gQZ

I
I Generate Modified Verification Data Sequence ~ I

I
I Generate Verification IVC for Modified Verification Data Sequence m I

I
I Compare Original IVC with Verification IVC m I

I
I Determine Integrity of Copy Section .f.1.§ I

u.s. Patent Jao.4,2011 Sheet 3 of 15 US 7,865,484 B2

FIG. 3 300

~

I Increment N 301 I

I Receive Nth Document 303 I

I Generate Nth Data Sequence 305 I

I Generate Nth Modified Data Sequence 307 I

I Generate Nth IVC for Nth Modified Data Sequence 309 I

I Associate Nth IVC with Nth Document ill I

I Compare Nth IVC with each (N-1)th IVC 313 I

~N 315

Y

I Generate Difference Record 317 I

I Select Document for Deletion 319 I

Replace Deleted Document with Pointer
to Retained Document 321

u.s. Patent Jao.4,2011 Sheet 4 of 15 US 7,865,484 B2

FIG. 4 400

~

Increment N 401

Generate Nth Data Sequence from Original Document 403

Generate Nth Modified Data Sequence 405

Generate Nth IVC for Nth Modified Data Sequence 407

Associate Nth IVC with Nth Modified Data Sequence 409

Associate Original IVCs with Original Document 411

u.s. Patent Jao.4,2011 Sheet 5 of 15 US 7,865,484 B2

FIG. 5 500

~
I Receive Document Copy 501 I

I Increment N 503 I

Identify Section of Copy Corresponding
to Nth Original Data Sequence 505

I Identify Nth Original IVC 507 I

I Generate Nth Verification Data Sequence 509 I

I Generate Nth Modified Verification Data Sequence ill I
I Generate Nth Verification IVC for Nth Modified Data Sequence 513 I

I Compare Nth Verification IVC with Nth Original IVC 515 I

~Y 517

N

I Generate Difference Report 519 J

u.s. Patent Jao.4,2011 Sheet 6 of 15 US 7,865,484 B2

FIG. 6 600

~

I Receive Data Sequence §Q11

I Identify First Element 603 I

I Identify Last Element or Criteria QQQ. I

~ Identify Modifiable Element Between First and Last §QZ I
I Delete or Substitute Identified Element ~ I

~>----N __

~
Y

I Send Modified Data Sequence to Ive Generator ~

u.s. Patent Jao.4,2011 Sheet 7 of 15 US 7,865,484 B2

FIG. 7 700

~
Identify Whether Unprinted Characters Are In
ASCII Printably Determinable Character Ranges 701

N

Identify Modifiable Elements
Using ASCII Values 705

Identify Modifiable Elements
Using File Format Codes 707

FIG. 8 800

~
Receive Document 801

Identify Data Sequences 803

Generate Original IVCs for Data Sequence 805

Append Original IVCs to Document 807

u.s. Patent Jao.4,2011 Sheet 8 of 15 US 7,865,484 B2

FIG. 9 900

~

Receive Document 901

Identify Sections 903

Increment N

Generate Original IVCs for Sections (N-1), N, (N+ 1) 907

Append Original IVCs to Section N 909

N

y

Publish Document with Original IVCs 913

u.s. Patent Jao.4,2011 Sheet 9 of 15 US 7,865,484 B2

FIG. 10 1000

~

I Receive Published Document 1001 I

1 Generate Electronic Copy 1003 !

!Increment N 1005 !

Identify Sections of Electronic Copy Corresponding
to Sections (N-1), N, (N+1) 1007

Identify OriginallVCs for Sections (N-1), N, (N+1) 1009
1

I Generate Verification IVCs for Sections (N-1), N, (N+ 1) 1011 1

1 Compare Verification IVCs With Original IVCs 1 013 ~

~ y

1015

N

I Generate Tamper Report 1017 I

u.s. Patent Jao.4,2011 Sheet 10 of 15 US 7,865,484 B2

llO0

1101

""
FIG. J J ~

1102
I Electronic Document Generation I

llO3 I
~ • • d

I AB<space><space>CD<Tab>EF$YZ I [AB<Tab>CD<space><Tab>EF$YZ J--
I I ..

1108 ~I Create Subset of Certain Elements I
~ -

1112 I ABCDEF$YZ I ~ lllO

1 1104

, 41 42 43 44 45 46 24 59 SA , "" / '\.

~ I
t\' DI 1114

I
I /11

lll6 Generate IVC L II

~
I 4B210790 16F2D470 C0507E04 32CD09A2 F993C38B I

i
l Generate IVC

1115
1105

ll13

i '--., - - ---

"" - ----

", 41 42 43 44 45 46 24 59 SA , - ----

r
llO9 I ABCDEF$YZ J~ lll1

"" i
I Create Subset of Certain Elements I

i
1106 I AB<space>CD<space><space>EF$YZ J~ 1107

j
I Optical Character Recognition (OCR) I

I

u.s. Patent Jao.4,2011 Sheet 11 of 15 US 7,865,484 B2

FIG. 12 1200

~
1202 1203

~ ~
Text for Text for demonstrating
demonstrating integrity verification integrity verification

I I ..
1210 I Subset selection 1~1208
~ ..

121 2 I Text for demonstrating integrity verification I

t
54 65 78 74 20 66 6F 72 20 64 65 60 6F 6E 73 74
72 61 74 69 6E 67 20 69 6E 74 65 67 72 69 74 79
20 76 65 72 69 66 69 63 61 74 69 6F 6E

~
1~1214 1216 I Generate IVC

~ ..
I AC9B9E34 84B97C7C B96F1CFC 05B81E5F A3FA1010 I

12

t
1~1215

13 I Generate IVC

~ i
54 65 78 74 20 66 6F 72 20 64 65 60 6F 6E 73 74
72 61 74 69 6E 67 20 69 6E 74 65 67 72 69 74 79
20 76 65 72 69 66 69 63 61 74 69 6F 6E

! ~1211

I Text for demonstrating integrity verification l
i ~1209

1207 I Subset selection I

~ i
Text for demonstrating integrity
verification

u.s. Patent Jao.4,2011 Sheet 12 of 15 US 7,865,484 B2

1300

FIG. 13 ~

1302 1301 ~Third of five pages.

1304
1303

/ ~

I
Page 3~f 5

I 8041EOE2 CC4~4CIO B066~JEC OE3~4855 OF4FFB56 ClOC4PE

J) T J J)

\ \ \ \ \ \
1305 1306 1307 1308 1309 1310

1400

FIG. 14 ~

1401"... .
Fourth of five pages. Extra material.

1402
1404

1403

J ~

I
Page 4 ~f 5

I 8041EOE2 OF4rFB56 CC46iCIO AFEp72B7 B998F7Bl 39A20rC9

J) 7) J)

\ \ \ \ \ \
1405 1406 1407 1408 1409 1410

1500

FIG. 15 ~
1501 ~ .

Fourth of five pages. Extra material.
1502

1504
1503

J ~

I
Page 4~f 5

I 8041EOE2 682~BA81 CC46iCIO AFE~72B7 B998F7Bl 39A20rC9

? (7 7 ((
1505 1506 1507 1508 1509 1510

u.s. Patent Jao.4,2011 Sheet 13 of 15

FIG. 16

User Computer

Document 1603

Control node

IVC Generator 1610

Modification Rules 1611

File Parser 1612

Server

Security module

User Computer

PEDDaL node

IIVC database

I Timing module

I Account database

Printer

1614 I
1615 I
1616 I

US 7,865,484 B2

1600

~

Emaillnbox

Other Networks

u.s. Patent Jao.4,2011 Sheet 14 of 15 US 7,865,484 B2

FIG. 17 l700

~
Document Section Select Modified IVC

----+ 1701 r---+ 1702 r----- Generator 1704 -

i
Type Identify Modification Rules

1703 ----+ 1705 .-

i
Layer counter

1706 .-

~ ~
Comparison Association /

1708 Alternate Channel
1707

u.s. Patent Jao.4,2011 Sheet 15 of 15 US 7,865,484 B2

FIG. 18 1800

~
Computing Apparatus 1801

1

CPU
1802

1

Memory 1803

I Digital representation 1804 I

Modified IVC generator 1805

I Data sequence modifier 1807 I 1104

~
I 1808 I IVC Generator / '\.

I
1\\ °1

I 1809 I
I //1

Modification rules 1 1

I Document processor 1806 I

1105

~ - ----

- ----
- ----

US 7,865,484 B2
1

COMPUTER PROGRAM INTEGRITY
VERIFICATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This is a continuation of U.S. patent application Ser. No.
12/053,560, filed Mar. 22, 2008 now U.S. Pat. No. 7,676,501,
titled "Document Integrity Verification", and claims priority
thereto.

TECHNICAL FIELD

The invention relates generally to information assurance.
More particularly, and not by way of any limitation, the
present application relates to integrity verification of printed
documents.

BACKGROUND

Documents have long been subject to tampering and forg
ery, such as when multi -page documents are subjected to page
substitution. In a multi-page document with a signature
appearing on fewer than all of the pages, a potential forger
may be able to create one or more pages that appear to belong
in the document, but yet have different content than is con
tained in the original pages. The forger may then remove one
or more valid pages and substitute the newly-created ones.
For example, in a multi-page will, where the testator and
notary sign only on the final page, a forger may substitute one
of the previous pages with one containing plausible, yet dif
ferent content. The movie Changing Lanes, released in 2002,
demonstrates the concept of forgery by page substitution,
although in that story line the document content was not
changed, but merely reformatted to be associated with a sig
nature page from a different original document. The forged
document was then submitted to a court by an unethical
attorney, as a piece of evidence.

Some efforts to combat document tampering include hav
ing the signer initial each page and drafting the document
such that sentences span page breaks. However, neither
method provides complete security. Many forgers are able to
falsely generate initials easily, generally more easily than
forging entire signatures. Widespread acceptance of photo
copied versions of documents opens forgery to an even wider
set of people lacking talent for duplicating signatures, since a
small cut-out from a valid page containing the signer's initials

2
ment. If an obvious, workable solution were available,
authors of important documents, such as wills and other docu
ments presenting attractive targets for forgery, would likely
have already adopted a solution in order to mitigate risk, thus
freeing the signer from the tedium of signing or initialing each
page of a long, multi-page document and other document
generators from the need for using expensive printing mate
rials.

Solutions do exist for rendering digital computer files, such
10 as electronic document files, tamper evident. These com

puter-oriented solutions predominantly use hash functions or
other integrity verification functions. A hash function, which
is an example of a one-way integrity verification function,
provides a way to verifY that a computer file, such as a pro-

15 gram, data file or electronic document, has not changed
between two separate times that the file has been hashed.
One-way integrity functions generally perform one-way
mathematical operations on a digital computer file in order to
generate an integrity verification code (lVC), such as a hash

20 value or message digest. This value may then be stored for
later reference and comparison with a subsequently calcu
lated IVC, but is generally insufficient to enable determina
tion of the file contents. A difference between two IVCs may
then provide an indication that the file contents had been

25 altered between the calculations. Hash functions are currently
widely-used in electronic signatures, for example in pretty
good privacy (PGP) electronic signatures, in order to render
digitally signed files tamper evident.

For example, if a file is created and hashed, anyone receiv-
30 ing a copy of that file at a later time may use a hash function

and compare the resulting second hash value against the first
hash value. For this to method to identify tampering, the same
hash function must be used both times, and the person com
paring the hash values may insist on receiving the first hash

35 value through some other delivery channel than the one
through which the file to be verified was received. One way to
do this would be for an author of a digital file to hash the file,
store the result, and mail the file to a receiving party on a
computer readable medium such as optical media, including

40 a compact disk (CD) or a digital versatile disk (DVD) or
magnetic media, or non-volatile random access memory
(RAM). The receiving party hashes the file, stores the result,
and waits for a telephone call from the author to discuss the
two hash values. If, during transit, the media had been inter-

45 cepted and substituted with one containing an altered file, the
telephone conversation discussing the hash values would
reveal that the received file was different than the one sent.

on an intermediate page may be attached to a forged page
prior to photocopying. Spanning sentences across page
breaks merely requires that the forged content on the substi- 50

tuted page take up approximately the same printed space as
the valid content that is replaced.

Secure hash functions, such as MD5, secure hash algo
rithm 1 (SHA-l) and SHA-2 family of hash functions, includ
ing SHA-224, SHA-256, SHA-384 and SHA 512, have cer
tain desirable attributes. For example, they are one-way, the
chances of a collision are low, and the hash value changes
drastically for even minor file alterations. The one-way fea
ture means that it is exceptionally unlikely that the contents of
a file could be recreated using only the hash value. The low
chance of a collision means that it is unlikely that two differ-

A drastic solution of notarizing each page individually may
not be practical. Further, notarizing each page merely indi
cates that each page had been signed by the proper person, but 55

without further measures, notarizing each page may not
ensure that all the pages were necessarily intended to belong
to the same document. That is, pages of different documents,
even if all individually notarized, could potentially be com
bined to produce a new document that the author did not 60

intend to endorse as a single, complete document.
There has thus been a long-felt need for a system and

method for rendering printed documents tamper evident, such
that tampering and forgery may be easily detected. However,
there has been a failure by others to solve the problem without 65

requiring special inks and/or paper or the use of secret infor
mation not available to an independent reviewer of the docu-

ent files could produce the same value. Drastic changes in the
hash value, for even minor alterations, make any alteration,
even the slightest, easily detectable.

This final feature has significant consequences when
attempting to use hash functions to verify the integrity of
printed documents. For example, an author may type "a b c"
as the entirety of an electronic document file and then hash it.
If the file were merely ASCII text, that is, it was not a propri
etary word processor file, it could contain ASCII values {97
329832 99} in decimal, which would be {Ox61 Ox20 Ox62
Ox20 Ox63} in hexadecimal (hex). The message digest using

US 7,865,484 B2
3

the SHA-l would then be {OxA9993A36 Ox4706816A
OxBA3E2571 Ox7850C26C Ox9CDOD89D}.

However, the printed version of the document would not
reliably indicate whether the letters were separated by simple
spaces or hard tabs. For example, another author may type
"a[Tab]b[Tab]c" as an electronic document file which, if it
were a simple ASCII text file instead of a word-processing
file, would contain ASCII values {97 9 98 9 99} in decimal
and {Ox61 Ox09 Ox62 Ox09 Ox63} in hex. Based on the
horizontal spacing of the [Tab] during printing, the two 10

example documents might be indistinguishable in printed
form. The message digest of the tabbed file using the SHA-l
would be {Ox816EBDB3 OxE5Eld603 Ox41402A18
Ox09E2F409 OxD53C3742}. This is a drastically altered
value for differences that may have no significance regarding 15

the substantive content or the intended plain-language mean-
ing.

4
use of the hash function unable to identify the alteration.
There is, however, a requirement for exploiting this vulner
ability: The altered file needs to contain enough bits to include
both the first set of changes and a second set of compensating
changes. The theoretical limit for the maximum number of
bits necessarily affected by the second set of changes is the
length of the message digest, although in practice, a second
set may be found in some situations that requires fewer than
this number. For the SHA-l, the second set of changes does
not need to exceed 160 bits in order to force the SHA-l to
return any desired value, such as the pre-tampered value. 160
bits is not a large number, and is far exceeded by unused space
in typical word processing, audio, video and executable files.
Therefore, if a file is hashed with the SHA-l to determine an
original hash value, and a first set of changes is then made, a
second set of changes is possible that will cause the SHA-l to
return the same message digest as the original message digest
for the unaltered file. Thus, the second set of changes is a
compensating set, because it compensates for the first set of

A printed document that is scanned by an optical character
recognition (OCR) system, or even carefully retyped by a
second person, can be expected to fail verification with stan
dard hash algorithms when the hash value of the recreated file
is compared against the hash value of an electronic file origi
nally used in the creation of the document. This can happen
even if the document is recreated exactly word-for-word,
because printing is a lossy process. That is, unprinted infor
mation, such as formatting commands, metadata and embed
ded data, is included in the hash value of the original elec
tronic document file, but is entirely unknown when
converting a printed version of the document back into
another electronic file that can be hashed.

20 changes by rendering the SHA-l blind to the alterations. The
second set of changes may include appending bits to the file,
changing bits within the file, or a combination of the two. The
compensating set of changes, however, may affect a set of bits
larger than the message digest, and in some cases, this may

25 ease the computational burden and/or make the compensating
set of changes harder to detect.

There are two typical prior art responses to the suggestion
of this vulnerability: The first is that the SHA-l and other hash
algorithms have been specifically designed to make calcula-

30 tion of a compensating set of changes computationally infea
sible. However, due to advances in computational power and
widespread study of hash algorithms, such calculations may
not remain computationally infeasible indefinitely. A second
ary response is that the compensating set of changes should be

Even if a file is distributed electronically, the presence of
formatting commands and a proprietary file format may still
present a problem. For example, if a document is hashed, and
then scrubbed to remove metadata or other data, the hash
value will be different, even if the substantive content is not
altered. Or possibly, a file could be opened without the con
tent being altered, but the meta data might change to reflect
that the document had been accessed. In such a case, a stan
dard hash function would be useless for detecting changes to
the document content, because the hash value can be expected 40

to be significantly different, even if not a single change were
made to the printed portion of the document.

35 easily detectable, because they may introduce patterns or
other features that do not comport with the remainder of the
file.

Using a standard hash algorithm, therefore, would be use
less when only a printed version of a document is available,
because the hash value verification would be expected to fail, 45

even if the printed document was completely intact and free
from any changes. Thus, despite the long-felt need for a
system and method for rendering printed documents tamper
evident, even widespread use of highly-secure digital file
integrity verification systems has not yet produced a solution 50

for documents printed on paper. The systems and methods
widely used for digital files are simply inapplicable to printed
documents, and prior art systems and methods fail to address
the problem, even partially.

Unfortunately, a problem exists even for the use of hash 55

functions with computer files. Recent advances in computa
tional capability have created the possibility that collisions
may be found for hash algorithms that are trusted today. For
example, the SHA-l produces a 160-bit message digest as the
hash value, no matter what the length of the hashed file may 60

be. Thus, the SHA-l has a vulnerability, which is shared by all
hash algorithms that produce a fixed-length message digest.

If a first set of changes is made to a file, a second set of
changes, if determinable, may be made to compensate for the
first set of changes, such that a hash value calculated after 65

both sets of changes are made is identical to the hash value
calculated prior to any changes being made. This renders the

Unfortunately, though, the secondary assumption, even if
true, is not entirely useful. This is because a primary use of
hash functions is for integrity verification of computer files
intended for computer execution and as data sets for other
programs. Both types of files typically use predetermined
formats that contain plenty of surplus capacity for concealing
the compensating set of changes. For example, executable
programs typically contain slack space, which are regions of
no instructions or data. Slack space is common, and occurs
when a software compiler reserves space for data or instruc
tions, but does not use the reserved space. Often slack space
is jumped over during execution. Thus, changes made to some
sections of slack space, including the introduction of arbitrary
bits, may not affect execution, and therefore will remain
undetectable.

A software program may potentially be altered using a first
set of changes to the executable instructions, such as adding
virus-type behavior or other malicious logic, and a compen
sating set of changes may be made in the slack space. The
compensating set of changes renders the first set of changes
undetectable to the hash algorithm, while the compensating
set itself remains undetectable because it is in the slack space,
and is neither executed nor operated on to produce anomalous
results. A covertly altered program may therefore be run,
mistakenly trusted by the user, because it produces the correct
hash value but does not exhibit any blatantly anomalous
behavior.

Similarly, word processing, audio and video files typically
have surplus capacity that exceeds the minimum needed for
human understanding of their contents. For example, propri-

kewilson
Highlight

kewilson
Highlight

kewilson
Highlight

kewilson
Highlight

kewilson
Highlight

US 7,865,484 B2
5

etary word processing files, such as * .DOC files, contain
fields for metadata, fonnatting commands, and other infor
mation that is typically not viewed or viewable by a human
during editing or printing. This surplus capacity often
exceeds the message digest length of even the currently
trusted set of hash functions. Thus, a first set of changes could
be made to the portion of the file having content that is to be
printed, heard or viewed, while the compensating set of
changes could be made within the surplus capacity.

Another issue, which could use improvement, is version
control of documents for reducing wasted space in file sys
tems on storage media. During the course of computer usage,
multiple identical copies of some files may be stored on a file
storage system in different logical directories. When backing
up, compressing, or otherwise maintaining the storage sys
tem, such as copying a hard drive to optical media or purging
unneeded files, it may be desirable to avoid copying or retain
ing duplicate files that waste media space.

For example, if a computer user faces the prospect of
running out of storage space, the user may wish to delete
duplicates of large files. If a single file is present in many
directories, a user may create a search that spans the multiple
directories, and look through the resulting list for duplicated
names and dates. If storage space is low, it may be preferable
to copy or retain only one of the files. Unfortunately, such a
plan suffers from multiple challenges, including search time
for duplicates, and missed opportunities for using shortcuts.
Further, if two files having identical content, but different
names, and which were put on the storage medium at different
times, common name and date search methods would not
identify them as identical. Thus, storage space would be
unnecessarily wasted.

SUMMARY

6
found rapidly, by comparing IVCs of substantive content,
which ignore unimportant changes. Further, hash function
reliability may be improved by eliminating hiding locations
for compensating changes in the event that an electronic
document, or digital file, is tampered and the tampering is
compensated for.

Excluding certain portions of a digital file from a hash
value calculation removes hiding places for compensating
changes, thereby either rendering tampering evident, or forc-

10 ing the compensating changes into a predetermined portion of
the file. This may enable detection of the compensating
changes by other methods, such as a human reading of printed
characters, or execution of central processing unit (CPU)
instructions. Embodiments tolerate changes to a file, using a

15 deterministic rule set for selecting regions for which changes
are to be tolerated. This currently goes directly against the
prevailing paradigm of hash function usage, because omitting
sections from integrity verification is an invitation to tamper
the omitted sections. The prevailing paradigm emphasizes the

20 detection of any changes at all to a file. Effectively, this
proposition is fundamentally at odds with current implemen
tations of hash function security protocols, although a layered
IVC approach, in which multiple IVCs are calculated, some
covering an entire digital file, and others covering only con-

25 tent-dictated portions, such as by omitting slack space, can
provide not only full file protection, but superior protection
over the prior art single-layer hash function calculations.

Embodiments hash only a subset of the characters of an
electronic file or document. Some embodiments may only

30 hash printable characters, whose presence and order can be
determined with certainty from a printed version. For
example, ASCII codes, such as from 33 to 94 and 97 to 126 are
the computer representation of most printable letters, punc
tuation, and numbers in the English language. Characters,

35 formatting commands, metadata, and other elements of a first
electronic document that cannot be exactly reproduced by
manually retyping a printed version of the first document into
a second electronic document are excluded from the hash

By creating a system that violates a fundamental rule of
common integrity verification systems, the expected failure
verification for a printed document can be prevented, thereby
reducing false alanns to a level which enables tamper detec
tion of printed documents. Printed documents may now be
rendered tamper evident with cryptographically strong meth
ods such as hash functions. Verifying the integrity of printed
documents, by using an embodiment of the invention,
requires operating entirely outside the standard paradigm of
digital security: A predefined subset of document elements, 45

which may be expected to be undetenninable from a printed
version of a document, are excluded from the initial calcula
tion of an integrity verification code (lVC) while the docu
ment is in electronic fonn. For example, metadata, tabs,
spaces, special characters, fonnatting commands, and the 50

like, may be excluded from a hash value calculation. Upon a
later recreation of a second digital form of the document, for
example by scanning or retyping the printed version of the
document into a computer, a subset of document elements is
excluded from the second calculation of an IVe. Thus, even if 55

the first and second digital forms of the document are differ
ent, if only a common subset of document elements, such as
printed characters, are used in the calculations of the IVCs, a
match may be expected when the printed version of the docu
ment has not been altered.

function in some embodiments, in order to prevent ambiguity
40 when a recreated electronic document is hashed. The use of

only printed characters in some embodiments, and the exclu
sion of uncertain characters and other file content that is lost
during printing, allows reliable recreation of a hash value
from a printed version of a document.

Embodiments may hash only a subset of the characters of
a file, and apply a consistent rule for other characters. For
example, all separations between characters, such as spaces
and tabs, may be represented by a pre-selected character, such
as a single space, even where multiple spaces may possibly be
ascertainable. Embodiments exclude at least a portion of
unprinted content, such as metadata, or other data that may be
unrelated to the substantive content of the document.

Aspects of the invention also relate to computer commu
nication using cryptography for purposes of data authentica
tion and computer program modification detection by cryp
tography. Aspects of the invention further relate generally to
database and file management and to file version manage
ment and computer media storage optimization.

The foregoing has outlined rather broadly the features and
60 technical advantages in order that the description that follows

may be better understood. Additional features and advantages
will be described hereinafter which fonn the subject of the
claims. It should be appreciated by those skilled in the art that
the conception and specific embodiments disclosed may be

Printed and imaged documents may now be rendered
tamper evident, at least with regard to substantive content.
Risks of some non-literal document changes, such as font,
spacing, alignment, and other formatting commands, may
need to be tolerated. However, a degree of content verification
is now possible for printed documents that had not previously
been available. Additionally, near duplicate files may be

65 readily utilized as a basis for modifying or designing other
structures for carrying out the same purposes. It should also
be realized by those skilled in the art that such equivalent

kewilson
Highlight

kewilson
Highlight

US 7,865,484 B2
7

constructions do not depart from the spirit and scope of the
invention as set forth in the claims. The novel features which
are believed to be characteristic of the invention, both as to its
organization and method of operation, together with further
objects and advantages will be better understood from the
following description when considered in connection with
the accompanying figures. It is to be expressly understood,
however, that each of the figures is provided for the purpose of
illustration and description only and is not intended as a
definition of the limits of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven
tion, reference is now made to the following descriptions
taken in conjunction with the accompanying drawings, in
which:

FIG. 1 illustrates a flow diagram for a method of generating
an integrity verification code (lVC) for a document.

FIG. 2 illustrates a flow diagram for a method of ascertain
ing the integrity of a document, using an IVC generated in
accordance with the method of FIG. 1.

FIG. 3 illustrates a flow diagram for a method of conserv
ing digital file storage space, using an IVC generated in
accordance with the method of FIG. 1.

FIG. 4 illustrates a flow diagram for a method of improving
the reliability of integrity verification, using an IVC gener
ated in tandem with the method illustrated in FIG. 1.

FIG. 5 illustrates a method of ascertaining tampering in
tandem with methods illustrated in FIGS. 1 and 4.

FIG. 6 illustrates a method for generating a modified data
sequence compatible with the method illustrated in FIG. 1.

FIG. 7 illustrates a method for identifying a modifiable
document element compatible with the method illustrated in
FIG. 6.

FIG. 8 illustrates a method for associating an IVC with a
document, compatible with the method illustrated in FIG. 1.

FIG. 9 illustrates another method for associating an IVC
with a document, compatible with the method illustrated in
FIG. 1.

FIG. 10 illustrates a method for using IVCs to identify
document tampering, compatible with the method illustrated
in FIG. 9.

FIG. 11 illustrates a functional block diagram of an
embodiment of a document integrity verification system.

FIG. 12 illustrates another functional block diagram of an
embodiment of a document integrity verification system.

FIG. 13 illustrates an intact page from a tamper evident
printed document.

FIG. 14 illustrates a tampered page from a tamper evident
printed document.

FIG. 15 illustrates another tampered page from a tamper
evident printed document.

FIG. 16 illustrates an embodiment ofa system for creating
a public database ofIVCs.

FIG. 17 illustrates another functional block diagram of an
embodiment of a document integrity verification system.

FIG. 18 illustrates a diagram of an embodiment of a docu
ment integrity verification apparatus.

DETAILED DESCRIPTION OF THE INVENTION

8
articles qualify for such a designation. "Tamper resistant" is
also often used incorrectly when a more appropriate proper
term would be "tamper evident". A tamper resistant article is
one for which an act of tampering is difficult, although pos
sible, to accomplish. A tamper evident article is one for which
tampering is detectable, independent of whether the tamper
ing itself is easy or difficult to accomplish.

Multiple types of documents may benefit from being ren
dered tamper evident, including those printed on paper,

10 etched, or otherwise rendered on any medium. Digital docu
ment images, for example PDF documents and/or other digi
tal files stored in an image-based and/or pixilated format, may
also be rendered tamper evident, at least with regard to sub
stantive content of the digitally-renderable images.

15
According to the prior art paradigm of document integrity

verification, there are three states of a scanned document.
State 1 is the original electronic rendering. State 2 is the
printed version, which is missing information relative to State

20 1. State 3 is the recreated electronic version, created by scan
ning the State 2 version. State 3 has extra information, much
of which is error prone and potentially random, when pre
dicted at the time of creation of the State 1 version of the
document. States 1 and 3 are almost certainly different, and

25 thus cannot be tested by the same integrity verification func
tion in order to ascertain the integrity of the State 2 version. A
new paradigm adds the following: There exists a fourth state,
State 4 of the document, which can be derived from State 3 by
eliminating all of the potentially erroneous information added

30 by the transition from State 2 to State 3, as well as a safety
margin of sacrificial material. State 4 is also derivable from
State 1, which can be identified as State 4-prime. Therefore,
the integrity verification process can be performed to com
pare State 4 against State 4-prime, which can be a reliable

35 comparison, in order to infer the integrity of State 2, within a
predetermined tolerance that allows for some variation.

The exclusion of elements of a digital computer file from a
hash value calculation process runs counter to the current
paradigm for the use of hash functions. The current use for

40 hash functions is for detecting any change at all to a file, no
matter how small the change may be. Excluding elements
from hashing prevents detection of many forms of alteration,
and for the traditional uses of hash functions in computer
security, such a result is unacceptable. This is because hash

45 functions such as the MD5, secure hash algorithm 1 (SHA-l)
and SHA-2 family of hash functions, and cyclic redundancy
checks (CRCs), are often used for virus detection and tamper
detection. Excluding metadata in a word processing file from
a hash value could enable malicious software to inhabit the

50 file or allow someone to access and edit the file without
detection. Thus, current implementations for hashing com
puter files for tamper detection typically include all of the bits
in a file, whether printed or not for word processing files, and
whether operated upon or not for binary executable files.

55 Embodiments allow verification that a multi-page printed
document has not been subjected to page substitution forgery
by enabling reliable integrity verification of the substantive
document content. This is accomplished by excluding
sources of expected false alarms, such as unprinted and/or

60 ambiguous information, that could render a traditional hash
function integrity check useless. In operation, a document
author could hash a document in accordance with an embodi
ment of the invention and print the hash value on each page of Terms are often used incorrectly in the information assur

ance field, particularly with regard to tamper detection. For
example, the term "tamper proof' is often used incorrectly. A 65

tamper proof article is effectively impervious to tampering,
which is often described as unauthorized alteration. Few

the document. A later reader of the document could perform
an optical character recognition (OCR) procedure on the
printed document to produce a recreated electronic version,
hash the recreated electronic version in accordance with an

US 7,865,484 B2
9

embodiment of the invention, and compare the printed hash
value with the hash value for the recreated electronic version.

Prior art hash functions would not be useful in such a
manner, since the two values used for comparison would
almost certainly be different. However, embodiments of the
invention could enable a reliable comparison without the
likelihood of a false alarm that would result from using a
traditional hash paradigm.

10
as the output from equivalent processes used later. In general,
the modified data sequence will be shorter than the original
data sequence, but in any case, will have at least one element
that is different, either by substitution or omission. In some
embodiments, capitalization infonnation may further be dis
carded, for example, lower case characters in the original data
sequence may be made upper case in the modified data
sequence. Such modification is lossy, because the original
data sequence cannot be regenerated from the modified data FIG. 1 illustrates a flow diagram for a method 100 of

generating an integrity verification code (lYC) for a docu
ment. Method 100 may be performed with any electronic
document, whether intended to be printed, etched, rendered

10 sequence. Lossy modification prior to integrity verification
works against the prevailing paradigm of integrity verifica
tion, because changes can be made in the document that are
undetectable. on any permanent or semi-permanent medium, saved in a

graphical image or common publishing fonnat, saved in a
printer-ready file, presented in a humanly-viewable format on 15

a display, used as a data source by a computing device, or used
to furnish computer-executable instructions to a computing
device. In block 101, an original document is received, either
in electronic fonnat as a digital representation, possibly
through an electronic message communication, a facsimile or 20

on a computer readable medium such as a magnetic or optical
storage device or volatile or non-volatile memory, or in a
non-electric format, such as printed or etched.

In block 103, an original data sequence is generated to
represent the contents of the original document. In some 25

embodiments, the data sequence is generated by scanning a
document and perfonning an optical character recognition
(OeR) process, in other embodiments, the data sequence
could be generated by retyping a document received in a
printed fonnat, in other embodiments, the data sequence 30

could be generated by reading a document from a computer
readable medium, and in other embodiments, the original
data sequence could represent the contents of an electronic
document, i.e., a digital representation of a document, which
is already in a computer memory. In some embodiments, if an 35

electronic document contains elements in a class of elements
that will be excluded from the later-generated modified data
sequence, the original data sequence will be the subset of
document elements beginning and ending with elements that
will remain Uflillodified in the modified data sequence. In 40

some embodiments, generating the original data sequence
includes determining the file type and parsing or processing
the document for type-relevant content. For example, a word
processing document may be parsed to distinguish between
metadata and user-editable content that is to appear in a 45

printed or published version of the document. In some
embodiments, content of document and footers, even if edit
able by a user, are excluded from the original data sequence.
A binary executable file may be parsed and/or analyzed by a
software analysis tool, such as a disassembler, that distin- 50

guishes between data-only sections and sections containing
executable instructions. In some embodiments, generating
the original data sequence comprises identifYing the entire
digital file, whereas in other embodiments, generating the
original data sequence comprises selecting a portion, less 55

than all, of the digital file, which contains selected type
specific elements such as printed characters or machine lan
guage instructions.

Elements of a document includes bits and bytes needed for
editing, printing, displaying, managing, and executing,
including the binary representations for individual letters,
punctuation, characters, spaces, tabs, line feeds, fonts, for
matting, hyperlinks and more. At a higher level of abstraction,
elements could include words, paragraphs, sections and chap-
ters. A subset of the elements ofa document is any collection
of the elements of a document, such that there is at least one
element in the document that is not in the subset. It should be
noted that, while any single subset cannot make up the entire
document, two or more subsets could contain all of the ele
ments of the document.

In block 107 an lye is generated for the modified data
sequence, and in block 109, the lye generated for the modi
fied sequence is associated with the original data sequence.
This operates outside prior art paradigms for document secu
rity, in which integrity verification is intended to allow iden
tification of any changes to a document. The key, however, is
that the rules for generating the modified data sequence from
the original data sequence are deterministic, and either com
municated with certainty communication or are determinable
with a limited number of trials.

The lye, therefore, is not calculated from the original data
sequence, but instead from a modified data sequence, which
has at least one element, between a first and final element,
which is different from, or omitted from, the original data
sequence. This is another violation of the prior art paradigms
for document security, because in some embodiments, the
lye is calculated after internal content changes, such as
substitutions and omissions, are made to a data sequence, and
associated with the uumodified data sequence. Thus, in those
embodiments, the lye is not calculated using the data
sequence with which it is associated. In some embodiments,
associating an lye with the original data sequence comprises
inserting the lye into the electronic document from which
the data sequence was generated. In some embodiments,
associating an lye with the original data sequence comprises
inserting the data necessary from printing the lye on the
document into a printer data stream or publishing fonnat file,
such that the lye appears on a hard copy printed version of
the document or in the published format file.

From an information theory perspective, if the rules used to
generate the modified sequence are determinable, then the
modified data sequence is reproducible, and an lye gener
ated with the modified sequence can be used to verifY the
integrity of at least a portion of the infonnation contained in In block 105, a modified data sequence is generated with a

lossy process, by excluding certain elements within the origi
na� data sequence, i.e., at least one element between the first
and last element of the original data sequence is omitted or
substituted when generating the modified data sequence. The
lossy process for printed documents is intended to exclude
any elements in the original document which cannot be ascer
tained with certainty. The processes used in block 105 are
selected such that the output from block 105 will be the same

60 the original document. The result is that, because the modi
fication rules pennit the loss of infonnation, alterations to at
least some portions of the original document may be indis
cernible, if they are confined to the lost portions of the original
data sequence. Thus, slightly different versions of an original

65 data sequence could produce the exact same modified data
sequence. For example, in some embodiments, a first original
data sequence D1, using three spaces to indent at the begin-

US 7,865,484 B2
11

ning of a paragraph, a second original data sequence D2,
using tab characters to indent at the beginning of a paragraph,
and a third original data sequence D3, using fonnatting com
mands to indent at the beginning of a paragraph, could all
produce identical modified data sequences if the substantive
content of D1, D2 and D3 were similar enough.

In some embodiments, the rules for creating a modified
data sequence could include replacing any combination of tab
characters (ASCII 9) and/or series of spaces (ASCII 32) and/
or other preselected character patterns in the original data 10

sequence with a single space (ASCII 32), or omit the tabs and
spaces entirely, resulting in only printable ASCII characters
remaining in the modified data sequence. A space between
printable characters, whether due to a space, a tab, or a com
bination, my be printably detenninable, because the existence 15

of a gap, i.e., a horizontal displacement exceeding the hori
zontal displacements between other pairs of adjacent printed
characters, may be ascertained. Multiple tabs and spaces,
however, are unlikely to be detenninable with certainty, as are
spaces and tabs at the beginning of a line, since an indention 20

may be due to fonnatting commands, rather than a user-typed
character. Line justification, which introduces additional
spaces between words or letters, in order to cause a printed
line to start and end at specified margins, can complicate
efforts to determine the number of spaces between printed 25

characters. Other issues complicating the detennination of
the existence of spacing characters is when a tab setting
places a character close to the same location it would have
been placed without a tab and colunm spacing in a multi
colunm document could be confused with spacing between 30

words. To reduce the colunm spacing ambiguity, the rules for
generating the modified data sequence for a document, which
is to be printed for human reading in a multi -colunm format,
may need to be processed to re-order the words as they would
be interpreted by an OCR process that did not take into 35

acconnt the colunms when creating an electronic version of
the document. The combination of a carriage return and a line
feed may be printably detenninable, as is a page break. Print
ably detenninable elements include printable elements, as
well as elements whose existence may be detennined from a 40

printed version of a document. However, page and line break
characters in a document are generally not determinable from

12
The original IVC generated for the modified data sequence

in block 107 may be an integrity verification function result,
such as a hash value or a checksum, which typically has fewer
bytes than the data sequence for which the IVC is generated.
The hash function may be any combination of the MD5, the
secure hash algorithm 1 (SHA-l), any of the secure hash
algorithm 2 (SHA-2) family of functions, or any other suit
able one-way fnnction. Although blocks 103-109 are illus-
trated in a manner that indicates subsequent processes, it
should be nnderstood that the processes denoted by blocks
103-109 may be conducted as overlapping in time. For
example, as a document is typed, a function of a word pro
cessor may send portions of the document to a parser and then
a one-way function, such as a hash fnnction, in order to
continually update the current IVC displayed in the document
footer, possibly along side a page number. Further, if the
document is large, it may be wasteful to generate the entire
modified data sequence in memory. Rather, sections of the
original data sequence may be modified on an as-needed basis
for the IVC generation, cycling through the processes of
blocks 105 and 107, such that the processes of blocks 105 and
107 are effectively simultaneous. Hash functions typically
operate on predetennined block sizes, which are often smaller
than the document being hashed. For some embodiments of
method 100, sections of the original data sequence may be
modified in a buffer to create portions of the modified data
sequence with a length that is a multiple of the hash function
block size. The same buffer location in memory may be
reused for subsequent portions of the document, in order to
save memory usage. Thus, the entire modified data sequence
may not exist in memory all at a single time if method 100 is
implemented in a manner to save computer memory, but
rather is generated in sections for use by the IVC generator.

Associating the original IVC with the original data
sequence in block 109 can include printing a portion of the
IVC on the document, such as printing a portion of a hash
function value, often called a message digest, on a page
relating to the original data sequence. In some embodiments,
a document signer or endorser can write an IVC by hand onto
the document, perhaps adjacent to initials or a signature line.
Multiple IVCs can be generated for a document by using
differing portions of the document, and the IVCs may be
further processed before being associated with the document,
such as being excerpted, encrypted, or subject to passed
through a computation that can be ascertained at a later date.
For example, one IVC may represent the printable or print
ably detenninable characters of the entire document. Other
IVCs may represent portions of the document, including por
tions defined by two points in the document, wherein the
points may include the first printable portion, page breaks,
and the final printable portion. In this manner, IVCs can be
generated for specific pages and cumulative portions, such as
from a starting point in the document to the end of a selected

a printed version of the document, because the word wrap
ping fnnction of a word processor or other program used to
generate a document introduces such elements automatically, 45

often without the document author typing corresponding
characters. Some embodiments may recognize a binary value
within a printable range of ASCII characters as an unprinted
formatting mark, based on the document type, such as the
</p> paragraph fonnatting identifier in an html document. In 50

such embodiments, the rules for generating the modified data
sequence will pennit identification of nnprinted, or unpub
lished, document elements by a file parser based on reserved
identifiers for certain document types, for example angle
braces in html and xml documents.

In some embodiments, each element in the original data
sequence will be subject to a detennination of retain, omit, or
modifY. Retained elements pass through to the likely shorter
modified data sequence. Between the first and final retained
elements, at least one element will be omitted or modified. In 60

some embodiments, the modification rules may be kept secret
for a party which intends to monitor a file on a computer
storage system for modification, such as for virus or hacker
penetration determination. For some embodiments, custom
rule sets will be communicated between a limited number of
parties. For some embodiments, modification rules will be
published openly.

55 page and from the start of a selected page to an ending point
in the document. These options are described in more detail in
the descriptions of FIGS. 13-15. Other options for associating
the original IVC with the original data sequence in block 109
are described below in the descriptions of FIGS. 3 and 4.

The operation of method 100 may be leveraged for mul-
tiple uses, including rendering printed documents tamper evi
dent, improving the efficiency of computer storage mediums,
extending the life of hash algorithms in the presence of
increasing computational power and research intended to

65 identify collisions for spoofing the message digest after tam
pering, and the enhancing time-stamping of documents in
order to more easily prove their existence as of a certain date.

US 7,865,484 B2
13

That is, violation of a fundamental paradigm of integrity
verification functions provides for multiple exploitable,
advantageous benefits.

14

FIG. 2 illustrates a flow diagram for a method 200 of
ascertaining the integrity of a document, using an IVC gen
erated in accordance with method 100. Methods 100 and 200
may be used with any printed, etched or otherwise published
document, including digital representations of documents in
image and rastered formats, for example bitmaps, jpegs and
fax bitstreams, and/or a common document publishing for- 10

mat, for example PDF documents and their equivalents. After

document footer. If only a single IVC is provided for the
entire document, the section of the copy is likely to be the
entire document, minus any IVC appearing on the pages, any
possibly other content of footers and headers. In some
embodiments, other document portions may be excluded
from the identified section, such as title pages, indexes,
appendices, page numbers, inline images, or other selected
contents of footers and headers. The exclusion of textual
information from document headers and footers is optional,
and based on the desired engineering and implementation
details desired for a particular integrity verification system.

an embodiment of method 100 renders a document tamper
evident, embodiments of method 200 identify whether tam
pering of a document copy has occurred. In block 201, a copy
of a document is received. The document will have at least 15

This information will not need to be included in every case.
For example, method 200 can be tried iteratively with differ
ing likely rule sets, some of which include page numbers and
some of which exclude page numbers. The IVCs from various
trials can be used as a comparison, and if one of them one ICV associated with it, possibly printed in a document

footer, header or appendix, although the IVC may be stored
externally from the document for some embodiments. If the
document is only in a hard copy form, such as a printed or
etched form, it may require scauning or retyping in order to be
converted into an electronic format. Some documents may be
received in a non-textually editable electronic format, such as
a facsimile data stream, an image file, a publishing file format,
or a printer file stream. The electronic version will require
some form of text extraction, such as, for example, an OCR
process, in order to identifY the substantive content of the
document. In some embodiments of method 200, formatting
commands, such as font selection and indentions, are often
not considered to be part of the substantive content. Docu
ments in multi -colunm format may require further processing
in order to recreate the proper word order after scanning

An OCR process, as well as manual retyping, is unlikely to
reproduce a character sequence that is identical to the origi
nally-typed document, due to ambiguity over spaces versus
tabs, colunm formatting, page margin changes, and paragraph
indentions. Thus, the recreated electronic document version
can be expected to differ from the original electronic docu
ment version. For prior art integrity verification methods,
such expected differences are almost certain to result in a
different IVC calculation for the recreated electronic docu
ment, even when the document is perfectly intact, with no
changes. The high probability offalse alarms renders prior art
methods of integrity verification for hard copy document
integrity functions effectively unusable.

However, since the original IVC (or multiple IVCs) asso
ciated with the document were created using lossy modifica
tion rules that produced a modified sequence (or sequences),
the same or similar rules applied to the recreated electronic
document can reproduce the same modified sequence (or
sequences). This cuts down the false alarms and allows use of
IVCs with hard copy documents that require recreation of
electronic versions. Thus, with the proper selection of modi
ficationrules, the original electronic version and the recreated
electronic version are two of the plurality of electronic ver
sions that will produce the same set of IVCs. Tampering, or
other permissible changes, which moves the document
among the different versions that all will produce the same
IVCs, may not be detectable within method 200, but instead
may require additional testing. This is because the combina
tion of methods 100 and 200 is intentionally blind to likely
differences, arising from recreation of an electronic docu
ment from a hard copy document. This is a trade-off for
enabling document integrity verification in situations in
which it was previously unavailable.

In block 203, the section of the document copy is identified,
which corresponds to the original data sequence being tested.
In some embodiments, the identified section will exclude the

matches, then the original rule set has been reverse-engi
neered, based on trial rule set that worked.

Some documents may have multiple IVCs corresponding
20 to different portions of a document. For example, a document

may have printed in the footer of each page an IVC corre
sponding to each of: the entire document, the current page, the
preceding page, the following page, the cumulative portion of
the document starting at the begiuning and going through the

25 end of the current page, and the cumulative portion of the
document starting at the beginning of the current page and
going through the end of the document. These options are
described in more detail in the descriptions ofFI GS. 13 -15. In
the event that multiple IVCs are used with a document, blocks

30 203 through 215 of method 200 may be repeated for as many
of the IVCs on as many of the pages as is desired. In some
embodiments, the position of an IVC within a document
footer identifies its relevance to a portion of the document.
For example, the IVC for the entire document may be listed

35 first, followed by the IVC for the current page, followed by
the IVC for the following page, although other orders may be
used. In some embodiments, the formatting and number of
the IVCs used may be determinable according to a published
set of rules. For example, a single page document will have

40 only a single IVC, a two page document will have three IVCs
on each page, and a three or more page document will use six
IVCs on each page. The IVC appearing on the page may be
only a portion of the entire calculated IVe. For example, if the
SHA-l is used, the IVC printed on a document may only be

45 the final 8 bytes of the message digest.
For purposes of describing FIG. 2, the example of a printed

five page document will be used. A recipient is provided with
a copy of the document and notices that six IVCs appear in the
footer of each page. The first IVC on each page is identical,

50 and corresponds to the IVC for the entire document. The
recipient scans the document to produce an electronic ver
sion, thus completing block 201. The first IVC to be repro
duced for integrity verification purposes is the IVC corre
sponding to the entire document. The entire document,

55 possibly omitting a cover page and appendices, is identified
as the section corresponding to the original IVC in block 203.
In some embodiments however, the integrity test may apply to
only a relatively small portion of a document. In block 205,
the IVC is identified, possibly from a plurality of IVCs in a

60 document footer, or else is provided from outside the docu
ment. In some embodiments, if an IVC had been written by
hand, it IVC may be typed in by user input or subjected to a
handwriting interpreter. In block 207 the recreated electronic
document version is used to generate the verification

65 sequence, such as by identifying the first and final printable
characters in the OCR'd document. When the section to be
tested for integrity is a single page, the process of generating

US 7,865,484 B2
15

the verification sequence includes identifying document ele
ments between page breaks, whether soft or hard.

In block 209, a modified verification data sequence is gen
erated from the verification data sequence, similar to the
process used in block 105 of method 100, as shown inFIG.1.
The modification process used in block 209 is also lossy, but
intended to be so, in order to match the output of the modifi
cation process used in block 105. Thus, the combination of
blocks 105 and 209 enable generation of matching IVCs, even
with different inputs. If the modification rules have been 10

published or otherwise communicated, these are used. Oth
erwise, blocks 203 through 215 will need to be iterated with
multiple guesses of the modification rule options, until a set of
modification rules is found that allows recreation of a major-

16
tronic version and a later-generated recreated electronic ver
sion. That is, the same verifiable state may be reached by
starting states which can be expected to have differences: the
original electronic state and the recreated electronic state. The
original IVC and the IVC generated for verification purposes
are generated for the verifiable state. The key is that the
modification rules applied to each starting state should be
lossy in such a manner that each modification process, in
methods 100 and 200, produces the same ending state.

FIG. 3 illustrates a flow diagram for a method 300 of
conserving digital file storage space, thus improving the effi
ciency of computer storage mediums, using an IVC generated
in accordance with method 100 of FIG. 1. The utility of
method 100 extends beyond the use of rendering documents
tamper evident, and thus may be used for additional purposes.
In some embodiments, IVCs have uses beyond detection of
malicious tampering, such as for determining whether two
files are substantially similar. This aids efficiency in storage
and backing up files, because it enables rapid detection of

20 similar, but not identical files.

ity of individual page IVCs. However, for this current 15

example, the document recipient is provided with a set of
modification rules that would enable the recreation of the
modified sequence, if the document was actually intact. In
block 211, an IVC is generated for the modified verification
data sequence using the same algorithm as was used in block
107 of method 100. If the specific algorithm used in method
100 is not communicated to the document recipient, several
integrity verification algorithms may need to be tested. Such
testing is typically more reliable using multiple single page
IVCs for a multi-page document and, if the majority of them
indicate the same integrity verification algorithm, that algo
rithm should be the one used for an integrity decision.

When similar, but not identical files are detected, a file
version control process can then examine the detected files
and determine whether it would be preferable to keep both
versions as full, separate files, or else keep one version and

25 delete the other, or else omit it from a file system back-up.

In block 213, the original IVC and the newly calculated
IVC are compared. In some embodiments, only a portion of
the original IVC is provided for comparison. In block 215, an 30

integrity decision is made using the results of the comparison
in block 213. If the IVCs for the tested section of the docu
ment match, the integrity decision is likely to pass. However,

Upon deciding to delete a version, or omit it from a file system
backup, a difference record and a pointer to the full file can
enable later reconstruction of the missing file. The difference
record can then be accessed to reconstruct the desired file if
needed, such as for separate editing or processing from the
referenced file. In some situations, however, some differences
may be discarded. For example, formatting changes might be
retained in a difference record, whereas certain metadata,
such as editing times, can be disposable. Such decisions can if the IVCs do not match, even after ensuring the modification

rules and algorithm were selected properly, then blocks 203
through 215 may need to be repeated for individual pages.

In the event that individual pages need to be checked for the
possibility that one has been substituted or altered, the IVCs

35 be made by evaluating media parameters, such as free space,
media access time, media reliability, and the value of the
differences.

of each individual page and cumulative subsections of the
document may be checked in accordance with method 200. In 40

some tampering scenarios, the tampered document may
include a printing of the post-tampering IVC on each indi
vidual page, although the post-tampering IVC for the entire
document will be incorrect. Thus, although the presence of
tampering somewhere in the document has been detected by 45

a document-wide IVC check, clever tampering could enable
each individual page to pass an IVC check. Thus, each page of
the five page example document may include IVCs that cor
respond to portions of the document not on that page, such as

One challenge in identifYing similar, but not identical, files
is that comparing large files can be burdensome. As an
example, consider the case of a set of I Mb files, which have
passed an initial screening, based on similar file lengths.
When searching for near duplicates among a set ofN files, the
number of file comparisons typically required for a brute
force search is the cumulative sum of I to (N-I). This can
easily become a large number. So if each comparison requires
operation upon two I Mb data sequences, the search will
consume considerable resources in terms of memory and
central processing unit (CPU) execution cycles.

However, if each of the comparisons uses only two 40 byte
sequences, the comparison will take far fewer resources.
Even fewer resources can be used if only a portion, perhaps an
8 byte portion of an IVC, is used in the initial similarity check.
With prior art IVCs, two files, which are identical, except for
a single, unimportant bit, will escape similarity detection.

a previous or subsequent page, or include portions of the 50

document prior to or subsequent to that page. By comparing
the printed IVCs in the document footers for consistency,
such as the IVC on page 3 for the subsequent page does
indeed match the IVC on page 4 for the current page, tam
pering of the IVCs themselves may be determined. 55 Fortunately, generating IVCs based on modified data

sequences, in which less-important data is excluded from the
IVC calculations, enables detection of near duplicates with
the shorter sequences. Matches identified with the IVCs can

There are at least four states of the document: original
electronic, published, recreated electronic, and verifiable
electronic. The verifiable electronic state is the one for which
anIVC is created in both methods 100 and 200. Upon creation
of the original electronic version, the exact state of a later- 60

generated recreated electronic version typically cannot be
predicted with certainty, since the OCR or retyping process
will be subject to variations. Upon generation of the recreated
electronic version, the state of the original electronic version
will likely not be reproduced exactly, for reasons described 65

earlier. Fortunately though, there exists a verifiable electronic
version that may be generated using both the original elec-

then be verified, if desired, with a more comprehensive com
parison. Other similarity checks can be employed, such as a
length threshold check, in which only files within a certain
percentage length are considered candidates for similarity.
File names and dates may be used, but are often not disposi
tive.

Method 300 performs one or more iterations of method
100. In block 301, N is incremented from an initial value of!,
which indicates that the first document was processed in

US 7,865,484 B2
17

method 100. In some embodiments, blocks 303-311 are iter
ated versions of blocks 101-109 for each of the second and
subsequent documents. In blocks 109 and 311, associating an
IVC with a document does not require that the IVC be printed
or published on the document. Instead, a database may be
created, with records for the processed files, identifYing the
IVCs as associated with their corresponding documents. The
database may contain file names, dates, sizes and permis
sions, indexed with the IVC, or even multiple IVCs, gener
ated according to method 400, shown in FIG. 400. Because
blocks 105 and 307 may use processes that exclude content
based on the document type, differences between the docu
ments that are of lesser importance may be ignored when
generating a set ofIVCs. In block 313, these IVCs are com
pared for matches. One way to do the comparison is to gen
erate and store all IVCs first, and then go through the list,
comparing each IVC against the others. Another is to com
pare each IVC, as it is generated, against the current list, and
then append the list with the newly generated IVe. Some
embodiments may skip comparing IVCs, if the file sizes are
different beyond a threshold. However, comparing file sizes
first, before comparing IVCs, may actually be slower than
comparing small portions of the IVCs for all files, and then
following up with a more comprehensive similarity check if
the initial partial-IVC comparison passes. That is, in some
embodiments, block 313 comprises a series of comparisons
that result in an improved comparison process, such as an
initial quick check that could eliminate most non-duplicates,
and then further, slower checks to reduce false alarms.

Comparisons using IVCs, even a full IVC from a SHA-S12
message digest, uses a significantly smaller number of bytes
than a comparison of the documents themselves. Because
document-dependent content exclusion rules limited the
document content that was used in generating the IVCs, docu
ments with similar substantive content can be readily identi
fied, even when using an integrity verification function, such
as a highly secure hash function, to generate the IVe. The
identification process thus described may result in the iden
tification of a match between subsequent document versions,
in which important formatting changes were made and should
be preserved. This is possible using method 300.

In decision block 315, if a match is detected, method 300
moves to block 317, in which differences between the corre
sponding files are determined. Otherwise, N is incremented in
block 301 and another file is processed. In some embodi
ments, the difference record includes differences not only
those found within the documents, but other differences per
taining to the documents, such as dates and sizes and a count
of the differences. In some embodiments, the difference
record is presented to a user or a document retention algo
rithm, for use in determining the disposition of the docu
ments. In block 319, one of the documents is selected for
retention.

Several retention policies may be implemented. For
example, if multiple identical documents are discovered, or
documents having disposable changes, one or two full copies
may be retained intact, while the others are selected for dele
tion. Some directories may be excluded from the comparison,
and directories may be prioritized for file retention or file
deletion, such that files in specific directories are more likely

18
should be understood, therefore, that method 300 may be
invoked automatically as part of a media writing process.

In some embodiments, the retention policy may select
keeping a newer file and deleting an older version, although
time and date indications on many computer file systems may
be inaccurate and thus not dispositive in the retention deci
sion. In some embodiments, a human user may be presented
with a summary of the difference record an asked to choose a
retention option. In some embodiments, a rule-based auto-

10 mated system may select a previously-identified solution. In
block 321, if a document has been selected for deletion, it is
replaced with a pointer to the retained document, for example
a shortcut file. When method 300 is used in media writing, the
deletion is a deletion from the writing process, and substitu-

15 tion with an instruction to write the shortcut to the media, in
place of the document. The difference record is stored along
with the shortcut in order to facilitate recreation of the origi
nal file, with a desired set of differences. It should be under
stood, however, that some embodiments delete documents

20 without generating pointers and difference records, and that
some embodiments delete documents and generate pointers,
but not difference records. Some embodiments may select
from the multiple options, based on the document differences
and/or user input. Method 300 is then available to return to

25 block 301 and iterate until all documents identified for pro
cessing have been processed.

FIG. 4 illustrates a flow diagram for a method 400 of
improving the reliability of integrity verification, using an
IVC generated in accordance with method 100 of FIG. 1.

30 Method 400 is useful for extending the reliability of hash
algorithms in the presence of increasing computational power
and research intended to identifY collisions for spoofing the
message digest after tampering. Method 400 provides for
layered integrity verification, using rule-based exclusion of

35 characters within a data sequence in the calculation of addi
tional IVCs. Similar to method 300, portions of method 400
comprise an iteration of portions of method 100. Methods 100
and 400 are used with a file known to be in a baseline state and
method 500, shown in FIG. 5 and described later, is the

40 corresponding tandem method useful for later integrity veri
fication.

As described previously, if a document is tampered with,
compensating changes could be inserted into portions of the
document such that a predetermined IVC is calculated after

45 tampering, such as the pre-tampering IVC for a specific hash
function. Embodiments of methods 100, 400 and 500 elimi
nate the hiding places for compensating changes. A prior art
IVC may be calculated, in addition to IVCs calculated in
methods 100 and 400, in order to provide for integrity veri-

50 fication of the entire file. However, the rules for excluding
portions of the document when generating further IVC layers
exclude areas of the document in which compensating
changes could be hidden. Content exclusion may be based on
the document type, such as excluding metadata from word

55 processing documents and slack space from binary execut
able files, and/or could be based on calculated values, such as
using a prior-generated IVC to determine excluded bytes
from subsequent IVC generation. This latter system is effec
tively equivalent to chaining in encryption, because the con-

60 tent to be protected is used as a data input for the protection
process. Multiple IVCs can be generated, using increasingly
shorter modified data sequences, to provide a layered protec
tion scheme.

to have files retained than others. For storage media compres
sion and/or clean-up, deletion may involve actually deleting
the document itself from the media index. For copying pur
poses, such as export and back-up, deleting may be limited to 65

logically deleting the copy instruction from the writing pro
cess, but leaving the original file in place on the media. It

For example, for a document which is an executable com
puter program, an IVC may be generated for the entire file. If
the program had been tampered with, the easiest place to hide
compensating changes is within slack space, which is unused

kewilson
Highlight

kewilson
Highlight

US 7,865,484 B2
19

space within an executable computer program file that had
been inserted by the compiler, and is not reached during
program execution. Another place to hide compensating
changes is in data sections which are unlikely to be used.
Thus, a second IVC could be generated for the program,
which excludes slack space from the IVC check, thereby
denying the slack space as an available hiding place for the
compensating changes. A third IVC could also be generated,
excluding data sections and/or rarely-used instructions. If all
three IVCs are associated with the program, then slack space
and data sections, even those intermixed with legitimate CPU
instructions, are unavailable as hiding places for compensat
ing changes. The modified data sequence generation process
for executable programs may require some type of control
flow analysis, similar to control flow graph generation pro
cesses used in disassembling debuggers, which discriminate
between instructions and data, and identify execution path
possibilities by analyzing control flow jump instructions. In
some embodiments, even bytes that fall within the set of
legitimate CPU instructions are excluded if a control flow
analysis indicates that the instructions are unreachable
through likely execution paths.

The concept is that the modified data sequence, for which
the IVC is generated, has multiple properties which compli
cate any attempts to calculate and insert compensating
changes to conceal tampering in the original document. This
is true even if the party perfonning the tampering is aware of
all the modification rules. First, if the modification rules are
set to exclude characters based on their value, the compen
sating changes must fit within a restricted character set. This
can potentially increase the required length of the compen
sating set. Whereas before, the compensating set might have
been able to use any byte values, the compensating changes
must now also pass through the content exclusion and modi
fication rules. Position-based modification rules could
exclude or otherwise modify every Nth element, where N can
change after each affected element. For modification rules
based on element position, compensating changes, if they can
even be found, must be positioned appropriately in the file in
order to remain in all of the necessary layers.

Document type-based modification which, for some
embodiments, retains printable or printably determinable
characters for word processing documents and computer
execution instructions and data for binary executable files,
forces compensating changes into portions of the document

20
Other methods are then brought into the tamper detection

process, which had not been available with prior art integrity
verification methods. For example, in documents intended for
human understanding, the ability of a human reader to rapidly
spot meaningless sequences of printed characters is har
nessed, whereas before, compensating changes could have
been hidden in areas of a word processing digital file never
seen by a human. In documents that form binary executable
files, the relatively fragile behavior of a CPU, when presented

10 with a set of instructions and data, can be harnessed to cause
a suspicion-raising crash when compensating changes are
executed, whereas before the compensating changes could be
hidden in areas of the file not operated upon by the cpu. For
audio and video files, the additional method is human inter-

15 pretation of the sound and/or images. For example, even if a
set of compensating changes could be found for an audio or
video file, that could return the SHA-l hash value to a pre
altered value after changing data, it would be highly unlikely
that the compensating changes would result in sounds or

20 images that do not arouse suspicion or attract the attention of
a human observer. However, if a potential saboteur had the
option of hiding the compensating changes in unused space in
the file, the tampering task is greatly simplified.

Method 400 perfonns one or more iterations of method
25 100. In block 401, N is incremented, which indicates that a

prior layer was processed in method 100. In some embodi
ments, blocks 403-411 are iterated versions of blocks 101-
109 for each of the further IVC layers. In block 403, the Nth
data sequence is generated from the original document. In

30 some embodiments, if each of the modified data sequences is
to be generated using the same baseline data sequence, block
403 is only performed a single time, and is not necessarily
updated for every iteration of method 400. In some embodi
ments, the modified data sequences become increasingly

35 exclusive with higher iterations, so the data sequence result
ing from block 403 or an equivalent is the previous round's
modified data sequence resulting from block 405. That is, in
some embodiments, the Nth data sequence is the (N-l)th
modified data sequence. In block 407, the Nth IVC is gener-

40 ated. It should be understood that multiple IVCs can be gen
erated for each iteration of methods 100 and 400, using dif
ferent integrity verification functions, and further, that
different functions can be used for different iterations. For
example, method 100 can use the SHA-512, the first iteration

45 of method 400 can use the SHA-256, and the second iteration
of method 400 can use the SHA-l. in which any compensating changes are detectable by other

means. For word processing documents, even if compensat
ing changes could be found that used only printable charac
ters, it is highly unlikely that the changes would take the fonn
oflanguage that fit the remainder of the document. For binary 50

executables, even if compensating changes could be found
that used only valid CPU instructions, it is highly likely that
the changes would cause anomalous program behavior that
would trigger suspicion.

In block 409, the IVC, or multiple IVCs, generated in the
Nth round are associated with the Nth modified data
sequence. In some embodiments, a reference database is cre
ated of the IVCs, and either a label or the position of an IVC
in the database indicates which of the N iterations produced
the IVe. In some embodiments, block 409 is omitted. In some
embodiments, a database listing the IVCs can be scrambled,
since during a verification process, a newly generated verifi
cation IVC can be compared against all the IVCs in the
reference database. In block 411, the IVCs are associated
with the original document, possibly by the creation of refer
ence database, or else by adding the IVCs to the document. It
should be understood, however, that in some embodiments,
blocks 109 and 411 of methods 100 and 400, respectively, are
optional. It should be further understood that, in some
embodiments, blocks 409 and 411 are merged.

Using methods 100, 400 and 500 in tandem, surplus file 55

capacity, i.e., the areas of a file in which changes could reside,
are placed outside a zone of trust for a particular IVC layer.
That is, the documents are separated into different subsets: a
portion for integrity verification and a buffer portion for
which changes are tolerable, at least for the current IVC 60

calculation layer. A portion excluded for one IVC layer,
though, may have been included in a prior IVC layer, because
methods 400 and 500 can be iterated. In some embodiments,
the excluded portion for a specific IVC layer is effectively a
sacrificial portion, intenningled with the included portion, 65

such that the portion of the document used in the IVC gen
eration is not fully contiguous.

In blocks 109 and 411, associating an IVC with a document
does not require that the IVC be printed or published on the
document. Instead, creating the reference database suffices,
because it stores infonnation that is used to communicate the
IVCs to another party via alternative means. This addresses a

kewilson
Highlight

kewilson
Highlight

kewilson
Highlight

kewilson
Highlight

kewilson
Highlight

US 7,865,484 B2
21

security concern often arising in the use of hash function. If
the document is emailed or mailed on a computer readable
media with the IVCs included, a third party may intercept the
document and the IVCs, tamper with the document, generate
new IVCs, and then forward the altered document and new
IVCs to the intended recipient. If the recipient uses the new
IVCs, they will falsely enable the document to pass integrity
verification. Rather, the recipient should insist on receiving
the IVCs by an alternative communication chaunel, such that
the third party cannot reliably intercept and replace them. 10

Examples of alternative communication channels include a
phone call, a separate mailing route, and even open publica
tion in a database, on a website, or in another public forum.
Open publication does not betray the contents of the original
file if an IVC is generated using a one-way function, such as 15

the SHA-I or a SHA-2 algorithm.
The tandem combination of methods 100 and 400, and

even method 100 alone, may be used with or without a prior
art hash of an entire document. That is, a prior art hash value
may be generated for a document, along with an IVC gener- 20

ated in accordance with method 100. Such a system provides
a two layer integrity verification solution. Alternatively,
Methods 100 could be performed alone, to provide a single
layer IVC solution, but one that still denies hiding places for
compensating changes. As yet another alternative, methods 25

100 and 400 could be performed in tandem, a prior art hash
function. This would provide, at a minimum, a three layer
solution, although more layers can be generated with a second
and further iteration of method 400. Further alternatives
could be the tandem use of methods 100 and 400 without a 30

prior art hash function. Any of these options are usable with
method 500 and the system 1700, illustrated in FIG. 17.

22
method 400. In some embodiments, blocks 511 and 513 are
similar to blocks 103-105 and 405-407 of methods 100 and
400, respectively.

In some embodiments, block 511 uses a similar modifica
tionrule set as is used in one of blocks 103 and 403, and if the
modification rules changed between different layers during
methods 100 and 400, block 511 should track this as N
changes. However, in some embodiments, methods 100 and
400 operate on word processing documents, which have for
matting commands and may further contain hyperlinks and
graphics, which are excluded from the IVC calculation. In
contrast, some embodiments of method 500 operate on OCR
process stream outputs, and can thus use a simpler set of
modification rules to produce the equivalent output. The key
concept here is that the modification rules in methods 100,
400 and 500 are tailored for the document types and formats
they can be expected to operate upon, but are capable of
producing the same output modified data sequence, if the
documents have the same substantive content. In block 513,
the corresponding integrity verification function should be
used as was used in the corresponding layer calculation of
block 105 or 405 to generate the verification IVe. It should
also be understood that block 507 may occur after any of
blocks 509-513.

The verification data sequence might be different than the
original data sequence, based on whether the document was
scanned in from a hard copy, such as a paper document. The
primary distinguishing factor between the original data
sequence and the verification data sequence is that the origi
nal data sequence is the baseline version. In some embodi
ments, there is no requirement that the original data sequence
be generated in method 100 prior in time to the generation of
the verification data sequence in method 500. For example, a
document could be generated and sent to a recipient by a first,

FIG. 5 illustrates method 500 of ascertaining tampering in
tandem with methods 100 and 400. It should be understood,
however, that method 400 is optional, and method 500 can be
used with method 100 alone. In block 501, a copy of a docu
ment is received. The document may be received in printed or
electronic file form. If the document is received in printed or
etched form, it will need to be converted to an electronic form
for processing. If the document is received in a published file
format, or an image format, an OCR or equivalent process
will enable extraction of the text for processing. In block 503,

35 unsecure path. The recipient may suspect tampering, and
begin operating method 500. Upon reaching the point that the
original IVC is required, block 507, the document recipient
may contact someone having a copy of the baseline, trusted
document. Method 100, and possibly method 400, may then

40 be initiated in order to generate the original IVe. Thus, the
original IVC is the IVC generated from the trusted electronic
document, even if calculated at a later time, and the verifica
tion IVC is the IVC generated from a document copy that is N is incremented, in the first iteration, to a value of I. In

should be understood, however, that if only a single IVC layer
was generated using a modified data sequence, block 503 is 45

not performed. It should be further understood that the des
ignation of N in any figure described herein is only for pur
poses of describing a particular iteration of a process, and
should not be interpreted to require that any memory location

being tested for integrity.
In block 515, the Nth verification IVC is compared with the

corresponding original IVC and blocks 503 through 515 are
iterated until a sufficient number of IVC pairs are tested. In
some embodiments, fewer than all the original IVCs may be
verified. If a discrepancy is found in decision block 517, a

in any processing device necessarily holds an integer value
equal to that described as N during the process iteration.

In block 505, the section of the document copy is identified
that corresponds to the Nth original data sequence used for
generating an IVe. The section may be a page of a printed
document, the entire document, or any identifiable subset of
the document. In block 507, the Nth original IVC, generated
using one of methods 100 or 400, is identified. In some
embodiments, this can be accomplished by reading a portion
of a face of the document. In some embodiments, this is
accomplished by reading in a separate document. In some
embodiments, such as those involving alternate communica
tion channels for the IVCs, the IVCs may be typed in or
electronically pasted into a user input window in a computer
program application executing at least a portion of method
500. In block 509, a verification data sequence is generated,
which corresponds to the original data sequence generated in
block 103 of method 100, shown in FIG. 1 or block 403 of

50 difference report is generated in block 519. The difference
report may be as simple as a warning to a user, an annotation
in a log file, an update to a database, or may be a trigger for a
quarantine action. Since method 500 may be used on binary
executables, computer data files, or executable source code,

55 such as a java script document, it may be incorporated into a
malicious logic detection system that would isolate poten
tially dangerous files.

FIG. 6 illustrates a method 600 for generating a modified
data sequence, compatible with method 100. For example,

60 method 600 may comprise an embodiment of block 105.
Further, method 600 may comprise embodiments of blocks
307 and/or 405. In block 601, a data sequence is received,
such as the sequence generated in block 103 of method 100.
The sequence has a first element and a final, or last, element.

65 These are identified in blocks 603 and 605 respectively. In
block 607, at least one element in the input sequence is
identified for modification, according to the modification

US 7,865,484 B2
23

rules, and the modification is perfonned in block 609. The
modification may be omission of an unprinted element, such
as deletion of a tab or a space, or may be the substitution of a
tab character with a space character. In some embodiments,
characters outside the English language alphabet character
set are replaced with the nearest character in the English
language alphabet character set. For example, an 0 with an
umlaut may be replaced with either an "oe" or else an "0"

alone. In decision block 611, if operation on the sequence is
finished, the modified sequence is sent to the IVC generator, 10

for processing as in block 107 of method 100.
It should be understood that method 600 illustrates a rep

resentative embodiment, and equivalent alternatives may be
used, such as operating on an open data sequence in which the
final element is not identified prior to beginning the data 15

sequence modifications. Alternatives for various embodi
ments include modifying the memory location containing the
input sequence; creating the output sequence in a different
memory location; and generating a modification index, which
indicates the modifications, thereby enabling production of 20

the modified sequence by the IVC generating function,
although the modified sequence itself may not actually exist

24
ferred data sequence to be used as an input to methods 600
and 700. For some documents, such as pure textual streams,
block 707 is optional.

FIG. 8 illustrates a method 800 for associating an IVC with
a document, compatible with method 100. For example,
method 800 may comprise an embodiment of block 109 or
block 411 of method 400. Method 800 can beused in embodi
ments which calculate multiple IVCs per documents and then
append the document with the IVCs. For example, method
800 can be used for calculating one IVC per page of a multi
page document, one IVC per paragraph of a single page
document, for calculating a set of IVCs using different hash
algorithms, or for calculating a set of IVCs, each generated
using one of a set of increasingly restrictive exclusion rules.
In block 801, a document is received, and in block 803, N data
sequences are identified. The IVCs are generated in block 805
and appended to the document in block 807. In some embodi
ments' the IVCs are written into a document footer of a word
processing document. Some embodiments include a word
processing application module, which produces the IVCs and
inserts them into the document, similarly to the way page
numbers and editing dates are automatically inserted and
updated.

FIG. 9 illustrates a method 900 for associating an IVC with
a document, compatible with method 100. For example,
method 900 may comprise an embodiment of block 109 or
block 411 of method 400. Using method 900, IVCs for dif
ferent sections of a multi-page document are placed on the
same page. A representative result of an embodiment of

in memory. Other alternatives include that block 607 and 609
are not perfonned individually on a character-by-character
bases, but rather an index is created for all modifications, 25

which are performed as a batch in a single pass through block
609. Further alternatives include that method 600 does not
operate on an entire sequence, but is used or generating por
tions of a sequence on an "as needed" basis for the IVC
generator, such as when blocks 105 and 107 of method 100
are perfonned overlapping in time. It should be understood
that multiple options exist for improving process and algo
rithm speeds, and the presentation of particular embodiments

30 method 900 is illustrated in FIG. 13, which described later in
further detail. The use of some embodiments of method 900

in any of the figures is not intended to exclude possible
variations, including those assisting with improving run time, 35

memory usage, fault tolerance, and/or security.
FIG. 7 illustrates a method 700 for identifYing a modifiable

document element, compatible with method 600. For
example, method 700 may comprise an embodiment of block
607. In block 701, a byte in the document is checked for 40

whether it is within a set of printably determinable ASCII
characters. In some embodiments, the set of printably deter
minable ASCII characters used in block 701 is fairly narrow,
including only a portion of the printable characters in the
English language alphabet. In some embodiments, easily 45

confusable or rarely used characters are excluded, even if
printable. If the tested character is outside the test ASCII
range, as determined in block 703, it is identified as modifi
able, either to be deleted or substituted with another character,
in block 703. If the tested character is within the test ASCII 50

renders a document not only tamper evident, but further
enables a detection of tampering to be isolated to a specific
page of a multi-page document.

In block 901, the document is received, for example a word
processing document is created or opened for editing. In
block 903, multiple sections of the document are identified,
and N is incremented block 905. The multiple sections may
overlap each other. As one example, a five page document
may be divided into sections defined as: an aggregate of all the
pages, each page, the combination of the first two pages, the
combination of the second through fifth page, the combina
tion of the first three pages, the combination of the third
through fifth page, the combination of the first four pages, and
the combination of the final two pages. This scheme provides
N= 12 different sections, although it should be understood that
other divisional schemes are possible. In block 907, IVCs are
generated for each of the sections, which are appended to a
section. As a further clarification of the five-page document
example, N=1 indicates the entire document, N=2 indicates
page one, N=3 indicates page two, and N=4 indicates page
three. It should be understood that other indexing schemes are
possible. For N=2, page one of the document would then be
appended with the IVC for the entire document (N=I), the

range, as detennined in block 703, it still might not be print
able, based on the document type. For example, the character
may be part of a formatting command, such as the </p>
paragraph fonnatting identifier in an html document, or a
formatting command in a proprietary word processing docu
ment. In such situations, the character may need to be
excluded, in order to enable reliable recreation of the modi
fied data sequence. Thus, in box 707, a second identification
process is used, based on whether the tested character is likely
to be printed. As a note for html documents on web sites, there
are different ways for a website visitor to experience the
document, including viewing the html code that produces the
web page, viewing the generated page, and having a speech
synthesizer read the contents, such as with an internet
browser configured to assist visually impaired persons. For
websites, the data sequence used to generate the text stream
for a speech synthesizer may, in some situations, be the pre-

55 IVC for page one (N=2), and the IVC for page two (N=3).
Similarly, for N=3, page two of the document would be
appended with the IVC for page one (N=2), the IVC for page
two (N=3), and the IVC for page three (N=4). Some IVCs,
such as the IVC for the entire document, may be appended to

60 each page, or just the first and final page. In some embodi
ments, for some sections, blocks 907 and 909 are omitted.

In decision block 911, a decision is made as to whether all
identified sections of the document have been processed and
appended. If not, method 900 returns to block 903 to incre-

65 ment N, although some embodiments may return to other
points in method 900. Otherwise, the document is published
with the IVCs on a face of the document, such as in a footer,

US 7,865,484 B2
25

header, or appendix. In some embodiments, if duplex printing
is available, the IVCs may be appended to the back of a page,
or inserted into an electronic version of the document as to be
printed on the back side of a page. In some embodiments,
publishing a document comprises printing on paper. In other
embodiments, publishing a document comprises generating a
printer stream suitable to command a printer to print at least a
portion of the document. In other embodiments, publishing a
document comprises generating a publishing format file, such
as a PDF, with or without text information, or an image-based
file.

FIG. 10 illustrates a method for using IVCs to identify
document tampering, compatible with method 900. Whereas
method 900 renders a document tamper evident, method 1000
enables detection of tampering occurring after method 900, or
even method 100, has been performed. That is, embodiments
of methods 900 and 1000 can be used in tandem to prepare a
document for transmission through an untrusted channel, and
then verify that the document remained intact upon receipt. In
the following description of method 1000, the five page docu
ment example from the description of method 900 will be
used, although it should be understood that method 1000 has
a wider range of applicability.

In block 1001, a copy of the document published in block
913 is received. Examples include that a PDF document may
be read from a computer readable medium, a facsimile or
email bitstream may arrive, and a paper document is obtained.
In block 1003, an electronic copy is generated that has text
information, such as by performing an OCR process, or any
other suitable process that generates a textual sequence from
an image or image-based digital file. In block 1005, N is
incremented and sections of the electronic copy, which cor
respond to some of the sections identified in block 903, are
identified in block 1007. Some embodiments of methods 900

26
1017. In some embodiments, block 1017 comprises provid
ing a warning to a user. In some embodiments, block 1017
comprises creating or annotating a log file.

FIG. 11 illustrates a functional block diagram of a docu
ment verification system 1100. System 1100, as illustrated, is
a mixture of devices and processes, and shows how a consis
tent data stream can be regenerated from a printed document,
even if the OCR processing produces a text stream containing
a different number of spaces between printed letters than was

10 in the original document.
Block 1101 represents electronic generation of an original

document, such as by typing, speech recognition, or any other
manner of generating a textual document. Two different elec
tronic versions of the document are produced, document 11 02

15 and document 1103, which can be stored on a computer
readable medium as digital files. Document 1103 is sent to
printer 1104 to produce a published copy 1105 on paper,
which represents the untrusted copy. Published copy 11 05 is
scanned and subjected to an OCR process 1106 to produce a

20 text stream 1107. If published copy 1105 contained any
graphics or was printed on paper that contained a logo and/or
other data in a letterhead section, OCR process 11 06 can omit
such information from output text stream 1107.

The first document version 1102 contains "AB", two
25 spaces, "CD", a tab, and "EF$YZ". The formatting was

changed to "AB", a tab, "CD", a space and a tab, and
"EF$YZ" in document version 1103, which was the one
printed. Due to scanning misalignment, or other OCR process
imperfections, the reproduced text stream 1107 contains

30 "AB", a space, "CD", two spaces, and "EF$YZ". Thus, OCR
process 11 06 improperly interprets one of the tabs as a single
space. With this erroneous reproduction, a prior art hash
function would mistakenly identifY published copy 1105 as
having been tampered.

However, original document modification process 1108
and verification modification process 1109 are able to alter
the IVC generation process to mask predictable differences
resulting from OCR process 1106. In the embodiment illus
trated, modification processes 1108 and 1109 delete horizon-

and 1000 use a consistent rule set to identify document sec- 35

tions, such using as page breaks and, for each page, identifY
ing prior cumulative and following cumulative sections.
Thus, for some embodiments of method 1000, the document
sections identified in block 903 may be independently iden
tified in block 1007, even if the section selection information
was neither appended to the document or accompanied the
document in some other way.

40 tal displacement elements, such as spaces and tabs, passing
only printable characters "ABCDEF$YZ" to create modified
data sequence 1110 and modified verification data sequence
1111, respectively. Thus, modification process 1108 excludes
two spaces and a tab between the first and last elements, A and

45 Z, of document 11 02 but a space and two tabs from document
1102. This illustrates a partial example of method 300, shown
in FIG. 3. If method 300 were to be implemented using
documents 1102 and 1103, a difference record generated in
block 317 ofan embodiment method 300 would indicate the

In block 1009, the original IVCs, which were appended to
the document in block 909, are identified in the current docu
ment copy. Examples include identifying a document footer
using its position on the paper, and then extracting characters
appearing in the footer after the OCR process. Any OCR
process that may have occurred in block 1003 could have
converted the original IVCs from images to text, which are
then converted to numeric values in block 1009. Alterna- 50

tively, an OCR process in block 1003 may be masked to omit
document footers, thereby avoiding processing the original
IVCs when generating the text stream. In such a situation, the
document footer may need to be processed with a separate
OCR process to extract the original IVCs. In some embodi- 55

ments, the original IVCs are read from a document header,
appendix, or an associated file.

In block 1011, the verification IVCs are generated, and are
compared with the original IVCs in block 1013. It should be
noted that the IVCs appearing on any page of a document 60

would not include their own values in the calculation, nnless

space and tab differences. Returning to FIG. 11, modification
processes 1109 also excludes horizontal displacement ele
ments and passes only printable characters "ABCDEF$YZ".
Therefore, the predictable differences due to recreating an
electronic document version from a printed version can be
omitted from the integrity verification calculations and are
thus eliminated as a source of false alarms of tampering.

The ASCII representations 1112 and 1113 of modified data
sequence 111 0 and modified verification data sequence 1111,
respectively, are identical: {Ox41 Ox42 Ox43 Ox44 Ox45 Ox46
Ox24 Ox59 Ox5A} in hex. The original IVC generation pro
cess 1114 and verification IVC generation process 1115 each
use the SHA-l to produce an identical IVC 1116. IVC 1116
represents either an original IVC or a verification IVC, based
on its association with either trusted document version 1103

a predictive-recursive hash algorithm could be found that
produced a hash value of a document that already contained
the calculated hash value within the document. In decision
block 1015, if a match is detected and remaining sections
require verification, method 1000 returns to block 1005 to
increment N. Otherwise, a tamper report is generated in block

65 or the untrusted document version 11 05. Thus, FIG. 11 dem-
0nstrates how two different electronic versions of an elec
tronic document can produce the same IVC, which is reliably

US 7,865,484 B2
27

identical to an IVC produced after printing a copy to paper,
scanning it, and then OCR processing it.

28
"First of five pages. Second of five pages. Third of five pages.

Fourth of five pages. Fifth of five pages." OxD183DFIC
Ox60A2A94A Ox67167C2B OxlB1571F8 Ox8041EOE2;

each page:
5 "First of five pages." Ox8E2B8A8B Ox2B9CA021

Ox986A78EE OxC190C923 OxBA7CDCOE,

FIG. 12 illustrates a functional block diagram 1200 of a
document verification system 1200. System 1200, as illus
trated, is a mixture of devices and processes, and is numbered
similarly to system 1100 in FIG. 11. With system 1200, a
method of operating in the presence of multiple font and
formatting commands is shown. Specifically, FIG. 12 illus
trates one way of handling underlining, italics, bold fonts, and 10

vertical displacement elements, such as line feeds. Document
versions 1202, 1203 and 1207 are formatted differently. In
addition to spacing differences among the documents, docu
ment version 1202 has a line feed between "for" and "dem
onstrating", whereas document version 1203 has a line feed
between "demonstrating" and integrity" and document ver
sion 1207 has a line feed between "integrity" and "verifica
tion". While OCR processes are unlikely to produce such
errors relating to carriage returns, introducing such errors into
the example demonstrates a method for making the IVC 20

reproduction process fairly robust.

"Second of five pages." Ox6FB49040 Ox999A39C4
Ox2FA4E7E OxCCB9DABF OxB066C3EC,

"Third of five pages." Ox77CCE801 Ox563BB863
Ox20D99BEE OxC44B7861 OxCC464ClO,

"Fourth of five pages." OxCBFID61B OxE3EEIBB8
Ox57694F92 OxDE5A739F OxF4FFB56,

"Fifth of five pages." OxC5842BEB OxAOOICIFB
OxF2AF23C3 Ox9CDB9962 OxB998F7Bl;

15 the combination of the first two pages:
"First of five pages. Second of five pages." OxFD73C82C

Ox37 A47022 Ox3382FBF OxA85D49E3 Ox70455759;
the combination of the second through fifth page:
"Second of five pages. Third of five pages. Fourth of five

pages. Fifth of five pages." OxlC8EAOBO Ox8357703A
Ox8E85A3AC Ox26440913 OxB6681C2;

the combination of the first three pages:
"First of five pages. Second of five pages. Third of five pages."

Ox75EF30B Ox7F624040 Ox283225F5 OxlC47843
OxE344855;

the combination of the third through fifth page:
"Third offive pages. Fourth of five pages. Fifth of five pages."

OxC8B309C2 Ox915CA283 Ox414EE5EO Ox8BDOA8El
OxClOC415E;

the combination of the first four pages:
"First of five pages. Second of five pages. Third of five pages.

Fourth of five pages." Ox68B67B5E OxC8B46BDl
Ox6F035035 Ox2462974B OxAFED72B7;

In the illustrated example, font commands such as bold,
underlining and italics are omitted from the IVC calculations.
Any OCR process used in conjunction with such an embodi- 25

ment must be compatible with the separation of underlining
from the text. In the illustrated example, line feeds and car
riage returns are not passed through to the modified data
sequence unaltered, although since these can often be reliably
recreated for many documents, some embodiments may 30

retain them intact. Instead, line feeds and carriage returns, if
separate characters, are substituted with a single space. As
illustrated, all displacement elements, whether horizontal,
vertical or both, single or multiple, are substituted with a
single space, ASCII 32 in decimal and Ox20 in hex. Modifi
cation processes 1208 and 1209 produce identical sequences
1210 and 1211, respectively, which are represented in ASCII
hex as sequences 1212 and 1213. Sequences 1212 and 1213

35 and the combination of the final two pages:

are operated upon by IVC generation processes 1214 and
1215 to produce an identical IVC 1216. If IVC generation 40

process 1215 did not produce IVC 1216, then document
version 1207 would be identifiable as having been tampered.
If modification process 1208 were configured to operate on
word processing documents, which could include hyperlinks
and graphics, modification process 1208 would require a 45

document parsing process to identifY unprinted characters
that happened to be within the printable ASCII range, as well
as other bytes that might coincidentally match the ASCII
codes for spaces, tabs, line feeds and carriage returns. How
ever, if process 1209 were configured to only operate on 50

purely textual data bitstream coming from an OCR process
that omitted font information, process 1209 could be consid
erably simpler than process 1208, but yet produce the same
output.

FIG. 13 illustrates an intact page 1300 from a tamper 55

evident printed document. The example document used for
FIGS. 13-15 is a five page document containing, in its
entirety, the text string "First of five pages. Second of five
pages. Third of five pages. Fourth of five pages. Fifth of five
pages." with one sentence on each page. The third page, 60

illustrated in FIG. 13 as page 1300 contains the text string
1301 "Third of five pages." Two tampered versions of the
fourth page of this example document are illustrated in FIGS.
14 and 15. Dividing the document into the 12 sections of the
example, usedin the description of FIG. 9, gives the following 65

text and corresponding IVC in hex:

an aggregate of all the pages:

"Fourth of five pages. Fifth of five pages." Ox3FDAEIC9
Ox2C50DB5F Ox65FOCD7D OxE5E837FF Ox39A20FC9.
The example IVCs are calculated with the SHA-l, using

printable characters and allowing a single space between
separated words, but omitting page breaks, formatting and
font commands, page numbers, and any other text appearing
in a document footer or header. In FIG. 13, text string 1301,
reciting "Third of five pages." appears in a content section
1302 of page 1300. Page 1300 also comprises a document
footer box 1303, although it should be understood that a
document footer may be identifiable by its position on a page,
and does not require enclosure by a line. Document footer box
1303 contains a page number 1304, reciting "Page 3 of5" and
six IVCs 1305-1310. In the illustrated embodiment, the
printed portions of the IVCs are the final 8 bytes of the
calculated IVC values, although a different portion of any
IVC may be used, including different portions for each of the
differing pages. IVC 1305 represents the entire document.
IVC 1306 represents the current page (third page). IVC 1307
represents the immediately prior page (second page). IVC
1308 represents the cumulation of all pages from the first page
through the end of the current page (first through third pages).
IVC 1309 represents the immediately following page (fourth
page). IVC 1310 represents the cumulation of all pages, from
the current page through the final page (third through fifth
pages). Other IVCs may be used in other embodiments, such
as including the IVC for pages N prior or following, in which
N exceeds 1. In some embodiments of a verification process,
the IVCs and possibly other contents of document footer box
1303 must be distinguished and separated from the contents
of content section 1302, to avoid corrupting the verification
IVC calculations.

US 7,865,484 B2
29

Using the example scheme, the IYC sets used for each of
the five pages will be:

30
bitstream is in image format; and print the IYCs on the paper,
either the front or the back. An exemplary facsimile machine
will have the functionality to parse a bitstream, either an
incoming fax message or the scarmed image that is to be sent;
determine the 12 sections; perform an OCR process; and print
the IYCs on the paper, either the front or the back, similar to
the way in which FAX transmittal data is appended to docu
ments. An exemplary document publishing software applica
tion will have functionality similar to the exemplary word

Page 1: OxDl83DFIC Ox60A2A94A Ox67167C2B
OxlB1571F8 Ox8041EOE2; Ox8E2B8A8B Ox2B9CA021
Ox986A78EE OXC190C923 OxBA7CDCOE; OxOOOOOOOO 5

OxOOOOOOOO OxOOOOOOOO OxOOOOOOOO OXOOOOOOOO;
Ox8E2B8A8B Ox2B9CA021 Ox986A78EE OXC190C923
OxBA7CDCOE; Ox6FB49040 Ox999A39C4 Ox02FA4E7E
OxCCB9DABF OxB066C3EC; OxDl83DFIC Ox60A2A94A
Ox67167C2B OxlB1571F8 Ox8041EOE2.

Page 2: OxDl83DFIC Ox60A2A94A Ox67167C2B
OxlB1571F8 Ox8041 EOE2; Ox6FB49040 Ox999A39C4
Ox02FA4E7E OxCCB9DABF OxB066C3EC; Ox8E2B8A8B
Ox2B9CA021 Ox986A78EE OxC190C923 OxBA7CDCOE;
OxFD73C82C Ox37 A47022 Ox03382FBF OxA85D49E3 15

Ox70455759; Ox77CCE801 Ox563BB863 Ox20D99BEE
OxC44B7861 OxCC464ClO; OxlC8EAOBO Ox8357703A
Ox8E85A3AC Ox26440913 OxOB6681C2.

10 processor, except the output will be a digital file stored on a
computer readable medium, such as a PDF file, rather than a
bitstream sent to a printer.

Page 3: OxDl83DFIC Ox60A2A94A Ox67167C2B
OxlB1571F8 Ox8041 EOE2; Ox77CCE801 Ox563BB863 20

Ox20D99BEE OxC44B7861 OxCC464ClO; Ox6FB49040
Ox999A39C4 Ox02FA4E7E OxCCB9DABF OxB066C3EC;
Ox075EF30B Ox7F624040 Ox283225F5 OX01C47843
OxOE344855; OxCBFID61B OxE3EEIBB8 Ox57694F92
OxDE5A739F OxOF4FFB56; OxC8B309C2 Ox915CA283 25

Ox414EE5EO Ox8BDOA8El OxClOC415E.
Page 4: OxDl83DFIC Ox60A2A94A Ox67167C2B

OxlB1571F8 Ox8041EOE2; OxCBFID61B OxE3EEIBB8
Ox57694F92 OxDE5A739F OxOF4FFB56; Ox77CCE801
Ox563BB863 Ox20D99BEE OxC44B7861 OxCC464ClO; 30

Ox68B67B5E OxC8B46BDl Ox6F035035 Ox2462974B
OxAFED72B7; OxC5842BEB OxAOOICIFB OxF2AF23C3
Ox9CDB9962 OxB998F7Bl; Ox3FDAEIC9 Ox2C50DB5F
Ox65FOCD7D OxE5E837FF Ox39A20FC9.

Page 5: OxDl83DFIC Ox60A2A94A Ox67167C2B 35

OxlB1571F8 Ox8041EOE2; OxC5842BEB OxAOOICIFB
OxF2AF23C3 Ox9CDB9962 OxB998F7Bl; OxCBFID61B
OxE3EEIBB8 Ox57694F92 OxDE5A739F OxOF4FFB56;
OxDl83DFIC Ox60A2A94A Ox67167C2B OxlB1571F8
Ox8041EOE2; OXOOOOOOOO OxOOOOOOOO OxOOOOOOOO 40

OxOOOOOOOO OxOOOOOOOO; OxC5842BEB OxAOOICIFB
OxF2AF23C3 Ox9CDB9962 OxB998F7Bl.

Zeros are used when no IYC is available according to the
scheme, such as for the prior page IYC on the first page
(which likely has no prior page), and the following page IVC 45

on the final page (which likely has no following page).
Another optional scheme, which saves footer space by one
IYC for three page minimum documents uses: current page;
prior page, or entire document if first page; cumulative prior
pages; following page, or entire document if final page; and 50

cumulative following pages. To save space on the document
faces, only portions of the calculated IYCs are appended to
the document, as shown in FIGS. 13-15.

A word processor, document publishing software, web
browser, facsimile machine, or printer can be used to produce 55

page 1300 in accordance with one or more embodiments of
methods 100, 400, 600, 700, 800, and/or 900. An exemplary
word processor will have the functionality to format the docu
ment into pages; use page breaks to identifY sections; gener-
ate the 12 original data sequences using the page breaks and 60

omitting possible incompatible graphics, footer and header
data; and either introduce the IYCs into footer box 1303
during editing, similarly to updating page numbers, or when
the document is rendered into print commands sent as a
bitstream to a printer. An exemplary printer will have the 65

functionality to parse an incoming bitstream; determine the
12 sections; possibly perform an optional OCR process, if the

For embodiments in which only a portion of the IYC is put
onto the document, the same portion need not be used on
every page. For example, FIG. 13 illustrates the use of the
final 8 bytes of the IYC of the entire document on each page.
However, for some embodiments, the bytes of the IYC used
on one page may be different than used on a subsequent page.
Since the IYC verification process will generate the entire
IYC, finding any portion of that IYC on a page provides
evidence that the IYC is valid. Using the same portion on each
page facilitates a rapid check for consistency, however, if only
a portion of the IYC is used in order to preserve footer space,
the entire IYC might not appear when using such a scheme
with a short document. Instead, a slightly different scheme
could be employed in which each page has a subsequent set of
8 bytes, such that over 5 pages, the entire IYC of the entire
document is printed, and if a 6th page were present, the IYC
byte portions would begin repeating. Yet another modifica
tion would be that portions of the IYC would overlap on
subsequent pages, such that bytes 1-7 appear on page 1, bytes
6-12 appear on page 2, and so on. This both preserves space
and provides continuity of the IYC portions among the pages.
However, in some embodiments, the portion of the IYC writ
ten to the page can be encrypted with a key that is accessible
for later verification or other wise changed in a marmer that
the published IYC portion can be recovered later.

FIG. 14 illustrates a tampered page 1400, which is a tam
pered version of the fourth page from the example five page
document. Page 1400 comprises a text string 1401 in a con
tent section 1402 and a document footer box 1403. Document
footer box 1403 contains a page number 1404, reciting "Page
4 of 5" and six IVCs 1405-1410. In the illustrated embodi
ment, the printed portions of the IYCs are the final 8 bytes of
the calculated IYC values. IYC 1405 represents the entire
document. IYC 1406 represents the current page (fourth
page). IYC 1407 represents the immediately prior page (third
page). IYC 1408 represents the cumulation of all pages from
the first page through the end of the current page (first through
fourth pages). IYC 1409 represents the immediately follow
ing page (fifth page). IYC 1410 represents the cumulation of
all pages, from the current page through the final page (fourth
and fifth pages).

Page 1400 has been tampered by adding extra material.
Specifically, text string 1401 recites "Fourth of five pages.
Extra material." instead of merely "Fourth of five pages." A
quick check for consistence between pages 1300 and 1400, of
FIGS. 13 and 14, respectively, indicates the following: IYCs
1305 and 1405, which represent the entire document, are
identical. IYC 1306, which appears on page 1300 and repre
sents the current page (page 1300), is identical to IYC 1407,
which appears on page 1400 and represents the prior page
(page 1300). IVC 1309, which appears on page 1300 and
represents the following page (page 1400), is identical to IYC
1406, which appears on page 1400 and represents the current
page (page 1400). Ifany of these IYC pairs did not match, as
is described later with FIG. 15, a human observer could

US 7,865,484 B2
31

identify tampering with a simple visual check. However,
these IVC pairs pass a consistency check, so further analysis
is needed.

32
1501 recites "Fourth of five pages. Extra material." instead of
merely "Fourth of five pages." Page 1500 differs from page
1400 in that IVC 1506 actually is a correct IVC for the

Several options are available for detecting the tampering to
page 1400. The quickest, if page 1400 is suspect, is to scan 5

page 1400 first, perfonn an OCR process to generate an
electronic data sequence representing text string 1401, in
which at least one of the scanning and OCR process distin
guishes between content section 1402 and document footer
box 1403, and then generating a verification IVC for text 10

string 1401. Using the SHA-l, the resulting verification IVC

tampered text string 1501. Thus, checking IVC 1506 alone
will not reveal tampering. However, comparing IVC 1506,
Ox6822BA81, with IVC 1309, OxOF4FFB56, reveals a dis-
crepancy, and thus tampering to page 1500.

Revisiting the scenario addressed in the Changing Lanes
movie, had the signature page contained an IVC for the docu
ment with which it was originally associated, the forgery
could have been easily detected. Additionally, had the origi-

is Ox9725FE54 Ox804BB6FA Ox4062EIEF OxB8D67EA
Ox6822BA81. The value ofIVC 1406, OxOF 4FFB56, does not
match any portion of the verification IVC, and thus tampering
of page 1400 is detectable.

Another option is to scan in the entire document and inde
pendently reproduce a verification IVC for the entire docu
ment. This produces Ox73532398 Ox048317FB Ox883C8386
Ox4BIBIEB5 Ox6AE6ECAl. The value ofIVCs 1305 and

nal signer written an IVC by hand on each page, they would
appear in his handwriting, which is more difficult to forge
than printing by a printer. To the extent that any prior art

15 method or combination of methods for rendering documents
tamper evident is practical, operable and/or obvious, but has
not yet been required by courts when compiling important
documents, the courts are expressly choosing to allow forgery
of contestable evidence to remain a nearly trivial effort.

FIG. 16 illustrates an embodiment of a system 1600 for
creating a public database ofIVCs. Illustrated system 1600
comprises an intranet 1601, although it should be understood
that other computer networks may be used. A user computer
1602 is used to create document 1603, and is coupled to

1405, Ox8041EOE2, does not match any portion of the veri- 20

fication IVC, and thus tampering of the entire document is
detectable. If a document has not been tampered, the check of
the entire document with a single verification IVC may be
quicker than a series of individual page checks. However,
once tampering has been detected, it may be further desirable 25 intranet 1601. Also coupled to intranet 1601 are a network

printer 1604, an email inbox 1605, a control node 1606, and
a server 1607, which acts as a gateway to internet 1608, using
a security module 1609 as a traffic gatekeeper. Control node
1606 is configured to intercept document 1603 as it is sent

to locate the affected section. For a short document, a next
step of checking individual pages may be fastest. However,
for long documents, the cumulative IVCs enable a more rapid
diagnosis, such as successively dividing the document into
halves, and further checking only the tampered half. 30 from user computer 1602 to printer 1604, email inbox 1605,

control node 1606 itself or an outside email address across
internet 1611.

For example, since the third page, page 1300, is the middle
page, the cumulative prior and cumulative following sections
can be checked independently, in order to detennine whether
tampering is in the first half and/or the second half. Verifying
the cumulative prior section includes generating a verification 35

IVC for the first through third pages, and comparing it with
IVC 1308. The verification IVC is Ox075EF30B Ox7F624040
Ox283225F5 OxOlC47843 OxOE344855, which contains IVC
1308. Thus, there is likely no tampering in the first through
third pages, but instead in one of the following two pages. 40

This may be verified by generating a verification IVC for the
third through fifth pages, and comparing it with IVC 1310.
The verification IVC for the third through fifth pages is
OxAB955A3F OxC4B617D1 Ox569EEA97 Ox2FEIBE63
Ox907ACFDD, which does not contain IVC 1310,
OxClOC415E. Alternatively, checking IVC 1410 could iso
late the pampering to one of the fourth and fifth pages, and
checking one ofIVCs 1406 or 1408 could isolate the tamper
ing to the fourth page (page 1400).

Control node 1606 comprises an IVC generator 1610, a
modification rule module 1611, and a file parser 1612. File
parser 1612 identifies the type of document 1603, generates at
least one original data sequence, selects a type-specific modi-
fication rule set from modification rule module 1611, and
calls IVC generator 1610 to produce an IVe. It should be
understood, however, that alternative configurations of con
trol node 1606 can perfonn the same required functions.
Control node 1606 illustrates an embodiment of a page veri-
fication for printed documents (Pa VePaDTM) system.

Upon generation of the IVC, control node 1606 communi
cates the IVC to a public electronic document dating list

45 (PEDDaLTM) node 1613, which hosts an IVC database 1614,
a timing module 1615, and an account database 1616. IVC
database 1614 stores time-stamped IVCs for multiple users,
and is available for public inspection. IVC database 1614
enables the author of document 1603 to prove the existence of

FIG. 15 illustrates a tampered page 1500, which is another
tampered version of the fourth page from the example five
page document. Page 1500 comprises a text string 1501 in a
content section 1502 and a document footer box 1503. Docu
ment footer box 1503 contains a page number 1504, reciting
"Page 4 of 5" and six IVCs 1505-1510. In the illustrated
embodiment, the printed portions of the IVCs are the final 8
bytes of the calculated IVC values. IVC 1505 represents the
entire document. IVC 1506 represents the current page
(fourth page). IVC 1507 represents the immediately prior
page (third page). IVC 1508 represents the cumulation of all
pages from the first page through the end of the current page
(first through fourth pages). IVC 1509 represents the imme
diately following page (fifth page). IVC 1510 represents the
cumulation of all pages, from the current page through the
final page (fourth and fifth pages).

Similar to page 1400 of FIG. 14, page 1500 has been
tampered by adding extra material. Specifically, text string

50 document 1603 as of the date that document 1603 was sent to
printer 1604, email inbox 1605, or any other destination
monitored by control node 1606. However, IVC database
1614 does not betray the contents of document 1603 to the
public, because IVC generator 1610 is a one-way function. It

55 should be noted that, while the illustrated embodiment shows
the use of IVCs generated in accordance with modification
rules module 1611, some embodiments ofIVC database 1614
can store prior art hash values.

Using database 1614 is then easy, due to the automated
60 operation of the illustrated system. A user merely needs to

send document 1603 to a printer or email inbox, such as
printer 1604 and email inbox 1605, which has been desig
nated as a recipient node for triggering a database entry by an
administrator of intranet 1601. For example, a large company

65 may set up a designated printer 1604 in an engineering depart
ment' and instruct employees to print certain technical reports
to printer 1604. As an alternative example, a law finn may

US 7,865,484 B2
33

instruct its support staff to email copies of PDF documents
filed with the US PTO to a designated email inbox1605.so
that if a document date is later contested, an independent
database can at least verify the document's existence as of a
certain date. In some embodiments, control node 1606 can
further determine that a received document is sent from a
previously identified computer outside security module 1609
of server 1607, such as computer 1617, if an authorized user

34
author may provide a printed paper copy of document 1603,
or a copy in another fonnat, to the accuser, along with an
assertion of the date at which document 1603 was allegedly
created, and instructions on where to find the IVC in the
accuser's own copy of the old IVC database. The accuser can
then independently generate the IVC, even from a paper copy
of document 1603 and verify that it matches a record in IVC
database 1614. Upon this occurrence, the accuser must then
admit to the existence of document 1603 prior to the date that is logged into intranet 1601 from a remote location. However,

control node 1606 may further avoid processing print jobs or
documents sent to printer 1604 or email inbox 1605 by unau
thorized parties, in order to avoid triggering undesired IVC
generation and database entries.

10 the accuser's own internal records indicate receipt of the
media containing IVC database 1614. Other options exist
when the convenient case described above does not exist,
such as a third party performing the verification, using a copy
of the proper edition of the IVC database 1614 from a trusted In operation, an exemplary system may function as fol

lows: Upon a user sending document 1603 to a monitored
destination, control node 1606 sends a message and a user
identification (ID) to database node 1613. Database node
1613 compares the retrieves time infonnation from timing
module 1615, and using the user ID, identifies the user in
account database 1616. Other networks 1618 can comprise 20

another control node, which automatically interacts with
database node 1613, similarly as control node 1606. Account
database 1616 enables identification of the responsible party

15 archival source. This option allows the verification of the date
of an important document, even without disclosing the con
tents outside trusted parties, and can thus provide an efficient,
reliable alternative to many intellectual property (IP) litiga-
tion procedures.

Thus, a large organization can automatically, and cost-
effectively, provide for date-proving documents generated by
its employees, which contain important IP, in a marmer pre
viously unavailable. Some embodiments of a publicly-avail
able PaVePaDTM system, similar to control node 1606, can to bill for database usage. Database node 1613 can operate on

either a per-use or a capacity subscription basis, similar to the
way a communication service pennits a user to contract for a
given number of messages on a monthly basis, but charges for
messages above that number.

25 interface with PEDDaLTM node 1613 to simplify automatic
generation and registration ofIVCs.

The new paradigm can be useful to the US PTO by making
available, as prior art, an entirely new class of documents for
use in 35 U.S.C §§102 and 103 rejections of patent applica-If database node 1613 determines that a requested database

entry is from an authorized database user, it retrieves time
information from timing module 1615. Database node 1613
then sends the time information, and optionally, a security
code to use when submitting a database entry. Control node
1606 timestamps the generated IVC using the time infonna
tion received from the database node or optionally, its own
internal clock, and returns the IVC, along with an optional
timestamp and response security code. Database node 1613
timestamps the incoming information, using infonnation
from timing module 1615, and updates IVC database 1614
with the received IVC and at least one timestamp. Submitter
ID infonnation may optionally be added to IVC database
1614. Database node 1613 then sends an acknowledgement

30 tions, which had previously been unavailable to the US PTO.
For example, documents appearing on web sites, if properly
processed and entered into an IVC database, may now be
dated with certainty and thus identifiable as prior art. The new
paradigm enables rendering a new class of documents

35 tamper-evident, and thus date provable, such as printed docu
ments and even documents placed on the internet. That is, a
document placed on the internet, even by an untrustworthy
party can be now be proven to have existed on a certain date
prior to being viewed or cited as a reference, and unmodified

of the IVC addition, so that control node 1606 does not need

40 since that date. This is a significant development, and a sur
prising result of violating fundamental security paradigms.
The failure of others to provide for rendering certain classes
of documents tamper evident and date provable, leaving them

to resend the information after a time-out. Database node
1613 and control node 1606 exchange fee information, and 45

database node 1613 updates account database 1616 to incre
ment the number ofIVC submissions from the account holder
associated with control node 1606. As some point, the owner
of control node 1616 is billed for the database services. Upon
some event, perhaps IVC database 1614 reaching a certain 50

size, or the lapse of a predetermined number of days, a per
manent computer readable medium, such an optical media,
containing a copy of IVC database 1614, is sent to at least
some of multiple contributors to IVC database. Additional
copies may be sent to other data archival service providers 55

and libraries. Older versions of IVC database 1614 may
remain available over internet 1608 for searching purposes.

At a later time, the author of document 1603 may be
accused of trade secret theft, and may wish to use document
1603 to prove prior conception of an invention. Consider, for 60

this example, the convenient case that both the author of
document 1603 and the accuser submitted IVCs to the same
version of IVC database 1614, and that the accuser kept
accurate date records of the receipt of the media. Accuser then
has possession a copy of a portion of the IVC database 1614, 65

which can be used to prove that document 1603 existed, at the
latest, as of the time that the accuser received the media. The

unusable for important functions, is added evidence of the
novelty of the newly introduced paradigm.

An example IVC database entry includes the following
1024 bit, 1 Kb, sequence for a document to be verified in
digital format, not subject to document-type exclusion rules:
Bits 1-512: the SHA-512 message digest of the entire docu

ment;
Bits 513-672: the SHA-l message digest, with position-based

exclusion rules using the SHA-2 message digest for exclu
sion indexing;

Bits 673-832: the SHA-l message digest, with further posi
tion-based exclusion using the prior SHA-l message digest
for exclusion indexing;

Bits 832-1024: timestamps, IVC generation indicia including
software version and rule options, and other administrative
data to facilitate database searching and/or IVC recreation.

It should be understood, however, that document-type exclu
sion rules may be used, as well as other IVC generation
algorithms, and a different number of IVC layers.
FIG. 17 illustrates a functional block diagram of an

embodiment of a document integrity verification system
1700. System 1700 is illustrated as an iterative system, and is
suitable for generating original IVCs to render a document
tamper evident, for generating verification IVCs to test for

US 7,865,484 B2
35

integrity, and can be used to check two documents for differ
ences, even if neither is trusted. As illustrated, system 1700 is
capable of performing methods 100-1000, if representing an
apparatus, but may be considered a generalization of methods
100-1000, ifviewed as a method flowchart.

System 1700 comprises a document 1701, which inter
faces with a section selection module 1702 and a type iden
tification module 1703. Section selection module 1702 gen
erates an original data sequence that is to be rendered tamper 10

evident or tested for tampering using modified IYC genera
tion module 1704. Modified IYC generation module 1704
receives input from modification rules module 1705, which in
turn, receives input for selecting specific modification rules
from type identification module 1703 and layer counter 1706. 15

Modified IYC generation module 1704 can output IYCs to
document 1701, for example a document footer, to an asso
ciation/alternative channel system 1707, and/or to a compari
son system 1708. It should be nnderstood that modification
rules module 1705 can use different rules in each layer, select- 20

ing among position-based and document type-based rules.

36
FIG. 18 illustrates a diagram of an embodiment of a docu

ment integrity verification apparatus 1800. Apparatus 1800
comprises a computing apparatus 1801 coupled to printer
1104, which prints document 1105. Computing apparatus
1801 is configured to perform at least a portion of any of
methods 100-1000, and the functions of control node 1606
and system 1700. In some embodiments, printer 1104 is a
multi-function device, capable of scarming printed docu-
ments to facilitate OCR. Computing apparatus 1801 com
prises a CPU 1802, although it should be understood that a
plurality ofCPUs may be used within computing apparatus
1801. Computing apparatus 1801 further comprises memory
1803, which is coupled to CPU 1802. Memory 1803 may
comprise volatile random access memory (RAM), non-vola
tile RAM, and other computer-readable media, such as opti-
cal and magnetic media.

Memory 1803 comprises a digital representation of a docu
ment, for example document 1105, a modified IYC generator
1805, and a document processor 1806. In some embodiments
document processor can parse digital representation 1804 to
classify document type-based content to facilitate data
sequence modification. Examples previously described
include classifYing bytes as either printable data or non-print-

As an example, operating on document 1701 may involve
the following process: The entire document is hashed with
SHA-512, a member off the SHA-2 family, for layer 1. Modi
fication rules for layer 1, in this example embodiment, are no
modification and indicate use of SHA-512. The output of the
layer 1 cycle from module 1704 is fed back into modification
rules module 1704, and triggers an increment in layer counter
1706. Layer 2 uses SHA-l, with bytes excluded from the
original document, indexed according to the SHA-512 mes
sage digest. For example, if the first byte of the layer 1
message digest is a 5, the 6th byte of the original document is
excluded when generating the modified data sequence. In this
example, zero-based indexing is used, so an index of 0 is the
first element. It should be understood, however, that alterna
tive arrangements can be used, such as not excluding a byte of

25 able data for word processing type documents, and as execut
able CPU instructions or unreachable instructions in a binary
executable file. Modified IYC generator 1805 comprises data
sequence modifier 1806, IYC generator 1807, and modifica
tion rules 1808. In some embodiments, data sequence modi-

30 fier 1806 and IYC generator 1807 comprise instructions
executable by CPU 1802, along with supporting data. In some
embodiments, data sequence modifier 1806 and IYC genera
tor 1807 comprise circuitry capable of performing computa
tions and processing, such as a field programmable gate array

35 (FPGA) and/or an application specific integrated circuit
(ASIC).

a message digest byte used for indexing is a O. If the second
byte of the layer 1 message is a hex E, which is decimal14, the
15th byte of the original data sequence, following a reference
point, is excluded when generating the modified data 40

sequence. The counting point for determining the second byte
to exclude can be immediately after the first non-excluded
byte, or start again at the 17th byte. This process iterates,
repeating the use of the message digest, if document 1701 is
longer than the message digest. If the counting restart points 45

are based on the position of an excluded byte, then the number
of bytes excluded will be determined by the values of the
bytes in the SHA-512 message digest, with lower values
causing more byte exclusions, due to short counting intervals.
If the counting position starts over every 16 bytes, then one in 50

16 bytes of document 1701 will be excluded when generating
the modified data sequence. It should be understood, how
ever, that alternative methods of chaining the IYC generating
fnnctions can be used.

As used with any of the methods or systems described
herein, a verification standard is an output of an integrity
verification function that is calculated when the document is
in a baseline reference condition. That is, a verification stan
dard is what a subsequent output of an integrity verification
function is compared against, in order to determine whether
the document has changed from the baseline reference con
dition. A test value is the output of a hash fnnction that is an
integrity verification function that is calculated in order to
determine whether the document has changed from the base-
line reference condition. The test value is created at a different
time or location from a verification standard. A match
between a verification standard and a test value is an indica
tion that the corresponding portion of the document is
unchanged. In this usage, a different time or location can
include any significant difference, no matter how small. In
order for a difference to be significant, there need only be a
possibility that at least one element of the document could

Further describing the example embodiment, SHA-l is
used for layer 2. One reason for the use of a different algo
rithm is that ifSHA-512 is later found to have an exploitable
weakness, the use of a different hash fnnction can act as a
safety net. The above-described process is repeated for layer

55 have changed. An integrity decision includes a comparison
between verification standards and test values for a document

3, using the message digest from layer 2 to further modify the 60

sequence used in layer 2. Alternatively, the layer 3 process
could modifY the original data sequence. This is different than
merely applying the multiple hash fnnctions to an uumodified
data sequence. By modifying the data sequence with the
output of one hash fnnction, the layers become intertwined, 65

complicating the calculations needed to find a compensating
set of changes.

or excerpt of a document. The comparison may be as simple
as a check for equality, but could also be more involved. An
integrity decision could be either binary, such as "changed
versus unchanged," or else diagnostic. A diagnostic decision
would attempt to indicate the locations and degrees of
changes. As used herein, OCR process is intended to include
any process for generating of textual information from
graphical information. In some embodiments, generating a
modified data sequence from an original or verification data
sequence may comprise scrambling the elements according
to a deterministic algorithm.

US 7,865,484 B2
37

Prior art methods for printing an encrypted code on the face
of negotiable documents, such as checks, are described in
u.s. Pat. Nos. 6,792,110; 6,549,624; 6,233,340 by Sandru.
The methods described by Sandru enable documents to be
self authenticating, by encoding certain data in a seal on the
face of a check. These prior art methods may be easily dis
tinguished from the current invention.

The methods taught by Sandru require that additional
secret information, not found in the document or otherwise
discoverable, be used in both the generation and the verifica- 10

tion of the encrypted code. Specifically, Sandru's methods
employ a secret key cryptographic scheme, which is highly
dependent on any variations in the data, to encrypt monetary
value information and thereby generate a first control code to

38
generating a first verification IYC, wherein generating a

first verification IYC comprises performing a one-way
operation on the first modified baseline data sequence,
and wherein the modification rules render tampering
undetectable for the at least one modified element within
the first baseline data sequence;

receiving a first original IYC;
comparing the first verification IYC with the first original

IVC; and
reporting an indication of tampering to the computer pro

gram, responsive to the comparison of the first verifica
tion IYC with the first original IVC identifYing a differ
ence between the first verification IYC with the first
original IVe.

2. The method of claim 1 wherein the modified element
comprises a byte that is within a slack space of the computer
program.

3. The method of claim 1 wherein the modification rules
require that at least one element, which is an executable
instruction for the processor, appear in the first modified
verification data sequence without modification.

be printed on the check. That is, selected information from the 15

check is combined with secret information, not in the docu
ment or otherwise ascertainable, to produce a larger data set
than the data set that is being protected. This larger data set is
encrypted to produce the encrypted code, using a reversible
algorithm, i.e., one that allows full recovery of the entirety of 20

the protected information. Thus, Sandru's encrypted code
must be long enough to contain all of the information to be
verified, plus the additional secret information.

4. The method of claim 1 wherein the modification rules
require that all executable instruction for the processor appear
in the first modified verification data sequence without modi-

25 fication.
When the check is presented for payment, a validator, such

as bank or check clearing house, must employ a verification
system having a copy of the encryption key to generate a
second control code. The check fails verification if the first
and second control codes are not identical. Sandru points out
that the encrypted information can only be decoded or vali
dated by a party possessing a key corresponding to the data
key necessary to decode or validate the encrypted informa
tion. Sandru's method is not tolerant of any document scan
ning or OCR errors, as is the present invention, but is instead
likely to be quite fragile and susceptible to false alarms of
document tampering, as described in the previous descrip- 35

tions of prior art.

5. The method of claim 1 wherein generating a first modi
fied baseline data sequence from the first baseline data
sequence comprises omitting the modified element from the
first baseline data sequence so that the first modified baseline

30 data sequence is shorter than the first baseline data sequence.
6. The method of claim 1 further comprising:

Although the invention and its advantages have been
described above, it should be understood that various
changes, substitutions and alterations can be made herein
without departing from the spirit and scope of the claims. 40

Moreover, the scope of the present application is not intended
to be limited to the particular embodiments described in the
specification. As one of ordinary skill in the art will readily
appreciate from the disclosure, alternatives presently existing
or later to be developed that perform substantially the same 45

function or achieve substantially the same result as the cor
responding embodiments described herein may be utilized
according to the invention. Accordingly, the appended claims
are intended to include within their scope such alternatives.

What is claimed is:
1. A computer-implemented method of computer program

integrity verification, the method comprising:

50

receiving an executable program into a computer readable
medium, wherein the executable program is executable 55

by a processor;
generating a first baseline data sequence from the execut

able program;
generating a first modified baseline data sequence from the

first baseline data sequence in accordance with a set of 60

modification rules, wherein at least one element of the
first baseline data sequence, between the first and final
elements of the first baseline data sequence, is modified
in the first modified baseline data sequence, and wherein
an integrity verification code (lYC) generated for the 65

first modified baseline data sequence will differ from an
IYC generated for the first baseline data sequence;

generating a second verification IYC, wherein generating a
second verification IYC comprises performing a one
way operation on the first baseline data sequence;

receiving a second original IYC;
comparing the second verification IYC with the second

original IVC; and
reporting an indication of tampering to the computer pro

gram, responsive to the comparison of the second veri
fication IYC with the second original IYC identifYing a
difference between the second verification IYC with the
second original lYe.

7. The method of claim 1 further comprising:
generating a second modified baseline data sequence from

the first modified baseline data sequence in accordance
with the set of modification rules, wherein at least one
element of the first modified baseline data sequence,
between the first and final elements of the first modified
baseline data sequence, is modified in the second modi
fied baseline data sequence, and wherein an integrity
verification code (lYC) generated for the second modi
fied baseline data sequence will differ from an IYC
generated for the first modified baseline data sequence;

generating a second verification IYC, wherein generating a
second verification IYC comprises performing a one
way operation on the second baseline data sequence;

receiving a second original IYC;
comparing the second verification IYC with the second

original IVC; and
reporting an indication of tampering to the computer pro

gram, responsive to the comparison of the second veri
fication IYC with the second original IYC identifYing a
difference between the second verification IYC with the
second original lYe.

8. The method of claim 1 further comprising:
receiving the first original IYC from a user input window.

US 7,865,484 B2
39

9. The method of claim 1 further comprising:
receiving element position calculation information; and
calculating a plurality of element positions; wherein the

modification rules require that elements at the plurality
of calculated element positions are modified.

10. A computer-implemented method of binary file integ
rity verification, the method comprising:

receiving a binary file into a computer readable medium;
generating a first baseline data sequence from the binary

file; 10

receiving element position calculation information;
calculating a plurality of element positions;
generating a first modified baseline data sequence from the

first baseline data sequence by modifYing a plurality of
elements between the first and final elements of the first 15

baseline data sequence, wherein an integrity verification
code (lYC) generated for the first modified baseline data
sequence will differ from an lye generated for the first
baseline data sequence;

generating a first verification lye, wherein generating a 20

first verification lye comprises performing a one-way

40
operation on the first modified baseline data sequence,
and wherein the modification rules render tampering
undetectable for the plurality of modified elements
within the first baseline data sequence;

receiving a first original lye;

comparing the first verification lye with the first original
IVe; and

reporting an indication of tampering to the computer pro
gram, responsive to the comparison of the first verifica
tion lye with the first original IVe identifYing a differ
ence between the first verification lye with the first
original IVe.

11. The method of claim 10 wherein generating a first
modified baseline data sequence from the first baseline data
sequence comprises omitting the plurality of modified ele
ments from the first baseline data sequence so that the first
modified baseline data sequence is shorter than the first base
line data sequence.

* * * * *

